Essentials of Brownian Motion and Diffusion


Book Description

Presents some gratuitous generalities on scientific method as it relates to diffusion theory. This book defines Brownian motion by the characterization of P Levy, and then constructed in three basic ways and these are proved to be equivalent in the appropriate sense.




Brownian Motion and Diffusion


Book Description

A long time ago I started writing a book about Markov chains, Brownian motion, and diffusion. I soon had two hundred pages of manuscript and my publisher was enthusiastic. Some years and several drafts later, I had a thot:sand pages of manuscript, and my publisher was less enthusiastic. So we made it a trilogy: Markov Chains Brownian Motion and Diffusion Approximating Countable Markov Chains familiarly - Me, B & D, and ACM. I wrote the first two books for beginning graduate students with some knowledge of probability; if you can follow Sections 3.4 to 3.9 of Brownian Motion and Diffusion you're in. The first two books are quite independent of one another, and completely independent of the third. This last book is a monograph, which explains one way to think about chains with instantaneous states. The results in it are supposed to be new, except where there are spe cific disclaimers; it's written in the framework of Markov Chains. Most of the proofs in the trilogy are new, and I tried hard to make them explicit. The old ones were often elegant, but I seldom saw what made them go. With my own, I can sometimes show you why things work. And, as I will argue in a minute, my demonstrations are easier technically. If I wrote them down well enough, you may come to agree.




Brownian Motion


Book Description

This eagerly awaited textbook covers everything the graduate student in probability wants to know about Brownian motion, as well as the latest research in the area. Starting with the construction of Brownian motion, the book then proceeds to sample path properties like continuity and nowhere differentiability. Notions of fractal dimension are introduced early and are used throughout the book to describe fine properties of Brownian paths. The relation of Brownian motion and random walk is explored from several viewpoints, including a development of the theory of Brownian local times from random walk embeddings. Stochastic integration is introduced as a tool and an accessible treatment of the potential theory of Brownian motion clears the path for an extensive treatment of intersections of Brownian paths. An investigation of exceptional points on the Brownian path and an appendix on SLE processes, by Oded Schramm and Wendelin Werner, lead directly to recent research themes.




Diffusion Processes and their Sample Paths


Book Description

Since its first publication in 1965 in the series Grundlehren der mathematischen Wissenschaften this book has had a profound and enduring influence on research into the stochastic processes associated with diffusion phenomena. Generations of mathematicians have appreciated the clarity of the descriptions given of one- or more- dimensional diffusion processes and the mathematical insight provided into Brownian motion. Now, with its republication in the Classics in Mathematics it is hoped that a new generation will be able to enjoy the classic text of Itô and McKean.




Stochastic Processes and Applications


Book Description

This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.




Essentials of Stochastic Processes


Book Description

Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.




Investigations on the Theory of the Brownian Movement


Book Description

Five early papers evolve theory that won Einstein a Nobel Prize: "Movement of Small Particles Suspended in a Stationary Liquid Demanded by the Molecular-Kinetic Theory of Heat"; "On the Theory of the Brownian Movement"; "A New Determination of Molecular Dimensions"; "Theoretical Observations on the Brownian Motion"; and "Elementary Theory of the Brownian Motion."




Handbook of Brownian Motion - Facts and Formulae


Book Description

Here is easy reference to a wealth of facts and formulae associated with Brownian motion, collecting in one volume more than 2500 numbered formulae. The book serves as a basic reference for researchers, graduate students, and people doing applied work with Brownian motion and diffusions, and can be used as a source of explicit examples when teaching stochastic processes.




Elements of Nonequilibrium Statistical Mechanics


Book Description

This book deals with the basic principles and techniques of nonequilibrium statistical mechanics. The importance of this subject is growing rapidly in view of the advances being made, both experimentally and theoretically, in statistical physics, chemical physics, biological physics, complex systems and several other areas. The presentation of topics is quite self-contained, and the choice of topics enables the student to form a coherent picture of the subject. The approach is unique in that classical mechanical formulation takes center stage. The book is of particular interest to advanced undergraduate and graduate students in engineering departments.




The Langevin Equation


Book Description

The book is suitable for a lecture course on the theory of Brownian motion, being based on final year undergraduate lectures given at Trinity College, Dublin. Topics that are discussed include: white noise; the Chapman-Kolmogorov equation ? Kramers-Moyal expansion; the Langevin equation; the Fokker-Planck equation; Brownian motion of a free particle; spectral density and the Wiener-Khintchin theorem ? Brownian motion in a potential application to the Josephson effect, ring laser gyro; Brownian motion in two dimensions; harmonic oscillators; itinerant oscillators; linear response theory; rotational Brownian motion; application to loss processes in dielectric and ferrofluids; superparamagnetism and nonlinear relaxation processes.As the first elementary book on the Langevin equation approach to Brownian motion, this volume attempts to fill in all the missing details which students find particularly hard to comprehend from the fundamental papers contained in the Dover reprint ? Selected Papers on Noise and Stochastic Processes, ed. N Wax (1954) ? together with modern applications particularly to relaxation in ferrofluids and polar dielectrics.