Random Field Models in Earth Sciences


Book Description

This book is about modeling as a prinicipal component of scientific investigations. In general terms, modeling is the funamental process of combining intellectual creativity with physical knowledge and mathematical techniques in order to learn the properties of the mechanisms underlying a physical phenomenon and make predictions. The book focuses on a specific class of models, namely, random field models and certain of their physical applications in the context of a stochastic data analysis and processing research program. The term application is considered here in the sense wherein the mathematical random field model is shaping, but is also being shaped by, its objects.This book explores the application of random field models and stochastic data processing to problems in hydrogeology, geostatistics, climate modeling, and oil reservoir engineering, among others Researchers in the geosciences who work with models of natural processes will find discussion of; - Spatiotemporal random fields - Space transformation - Multidimensional estimation - Simulation - Sampling design - Stochastic partial differential equations










Data Assimilation and Control: Theory and Applications in Life Sciences


Book Description

The understanding of complex systems is a key element to predict and control the system’s dynamics. To gain deeper insights into the underlying actions of complex systems today, more and more data of diverse types are analyzed that mirror the systems dynamics, whereas system models are still hard to derive. Data assimilation merges both data and model to an optimal description of complex systems’ dynamics. The present eBook brings together both recent theoretical work in data assimilation and control and demonstrates applications in diverse research fields.




Modern Methodology and Applications in Spatial-Temporal Modeling


Book Description

​ This book provides a modern introductory tutorial on specialized methodological and applied aspects of spatial and temporal modeling. The areas covered involve a range of topics which reflect the diversity of this domain of research across a number of quantitative disciplines. For instance, the first chapter deals with non-parametric Bayesian inference via a recently developed framework known as kernel mean embedding which has had a significant influence in machine learning disciplines. The second chapter takes up non-parametric statistical methods for spatial field reconstruction and exceedance probability estimation based on Gaussian process-based models in the context of wireless sensor network data. The third chapter presents signal-processing methods applied to acoustic mood analysis based on music signal analysis. The fourth chapter covers models that are applicable to time series modeling in the domain of speech and language processing. This includes aspects of factor analysis, independent component analysis in an unsupervised learning setting. The chapter moves on to include more advanced topics on generalized latent variable topic models based on hierarchical Dirichlet processes which recently have been developed in non-parametric Bayesian literature. The final chapter discusses aspects of dependence modeling, primarily focusing on the role of extreme tail-dependence modeling, copulas, and their role in wireless communications system models.




Modeling Spatio-Temporal Data


Book Description

Several important topics in spatial and spatio-temporal statistics developed in the last 15 years have not received enough attention in textbooks. Modeling Spatio-Temporal Data: Markov Random Fields, Objectives Bayes, and Multiscale Models aims to fill this gap by providing an overview of a variety of recently proposed approaches for the analysis of spatial and spatio-temporal datasets, including proper Gaussian Markov random fields, dynamic multiscale spatio-temporal models, and objective priors for spatial and spatio-temporal models. The goal is to make these approaches more accessible to practitioners, and to stimulate additional research in these important areas of spatial and spatio-temporal statistics. Key topics: Proper Gaussian Markov random fields and their uses as building blocks for spatio-temporal models and multiscale models. Hierarchical models with intrinsic conditional autoregressive priors for spatial random effects, including reference priors, results on fast computations, and objective Bayes model selection. Objective priors for state-space models and a new approximate reference prior for a spatio-temporal model with dynamic spatio-temporal random effects. Spatio-temporal models based on proper Gaussian Markov random fields for Poisson observations. Dynamic multiscale spatio-temporal thresholding for spatial clustering and data compression. Multiscale spatio-temporal assimilation of computer model output and monitoring station data. Dynamic multiscale heteroscedastic multivariate spatio-temporal models. The M-open multiple optima paradox and some of its practical implications for multiscale modeling. Ensembles of dynamic multiscale spatio-temporal models for smooth spatio-temporal processes. The audience for this book are practitioners, researchers, and graduate students in statistics, data science, machine learning, and related fields. Prerequisites for this book are master's-level courses on statistical inference, linear models, and Bayesian statistics. This book can be used as a textbook for a special topics course on spatial and spatio-temporal statistics, as well as supplementary material for graduate courses on spatial and spatio-temporal modeling.




Clinical Research Informatics


Book Description

The purpose of the book is to provide an overview of clinical research (types), activities, and areas where informatics and IT could fit into various activities and business practices. This book will introduce and apply informatics concepts only as they have particular relevance to clinical research settings.




Wireless Sensor Networks


Book Description

A wireless sensor network (WSN) uses a number of autonomous devices to cooperatively monitor physical or environmental conditions via a wireless network. Since its military beginnings as a means of battlefield surveillance, practical use of this technology has extended to a range of civilian applications including environmental monitoring, natural disaster prediction and relief, health monitoring and fire detection. Technological advancements, coupled with lowering costs, suggest that wireless sensor networks will have a significant impact on 21st century life. The design of wireless sensor networks requires consideration for several disciplines such as distributed signal processing, communications and cross-layer design. Wireless Sensor Networks: Signal Processing and Communications focuses on the theoretical aspects of wireless sensor networks and offers readers signal processing and communication perspectives on the design of large-scale networks. It explains state-of-the-art design theories and techniques to readers and places emphasis on the fundamental properties of large-scale sensor networks. Wireless Sensor Networks: Signal Processing and Communications : Approaches WSNs from a new angle – distributed signal processing, communication algorithms and novel cross-layer design paradigms. Applies ideas and illustrations from classical theory to an emerging field of WSN applications. Presents important analytical tools for use in the design of application-specific WSNs. Wireless Sensor Networks will be of use to signal processing and communications researchers and practitioners in applying classical theory to network design. It identifies research directions for senior undergraduate and graduate students and offers a rich bibliography for further reading and investigation.