Variance Components


Book Description

Variance Components Estimation deals with the evaluation of the variation between observable data or classes of data. This is an up-to-date, comprehensive work that is both theoretical and applied. Topics include ML and REML methods of estimation; Steepest-Acent, Newton-Raphson, scoring, and EM algorithms; MINQUE and MIVQUE, confidence intervals for variance components and their ratios; Bayesian approaches and hierarchical models; mixed models for longitudinal data; repeated measures and multivariate observations; as well as non-linear and generalized linear models with random effects.




Variance Components


Book Description

WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. ". . .Variance Components is an excellent book. It is organized and well written, and provides many references to a variety of topics. I recommend it to anyone with interest in linear models." —Journal of the American Statistical Association "This book provides a broad coverage of methods for estimating variance components which appeal to students and research workers . . . The authors make an outstanding contribution to teaching and research in the field of variance component estimation." —Mathematical Reviews "The authors have done an excellent job in collecting materials on a broad range of topics. Readers will indeed gain from using this book . . . I must say that the authors have done a commendable job in their scholarly presentation." —Technometrics This book focuses on summarizing the variability of statistical data known as the analysis of variance table. Penned in a readable style, it provides an up-to-date treatment of research in the area. The book begins with the history of analysis of variance and continues with discussions of balanced data, analysis of variance for unbalanced data, predictions of random variables, hierarchical models and Bayesian estimation, binary and discrete data, and the dispersion mean model.







Estimation of Variance Components and Applications


Book Description

Matrix algebra; Asymptotic distribution of quadratic statistics; Variance and covariance components models; Identifiability and estimability; minimum norm quadratic estimation; Pulling of information for estimation; Uniform optimality of minqe's; Computation of minqe's for variance-convariance components models; Integrated minqe and mile; Asymptotic properties estimators; Minimum variance quadratic estimation; Aplications to selection problems.




Components of Variance


Book Description

The components of variance is a notion essential to statisticians and quantitative research scientists working in a variety of fields, including the biological, genetic, health, industrial, and psychological sciences. Co-authored by Sir David Cox, the pre-eminent statistician in the field, this book provides in-depth discussions that set forth the essential principles of the subject. It focuses on developing the models that form the basis for detailed analyses as well as on the statistical techniques themselves. The authors include a variety of examples from areas such as clinical trial design, plant and animal breeding, industrial design, and psychometrics.




Parameter Estimation and Hypothesis Testing in Linear Models


Book Description

A treatment of estimating unknown parameters, testing hypotheses and estimating confidence intervals in linear models. Readers will find here presentations of the Gauss-Markoff model, the analysis of variance, the multivariate model, the model with unknown variance and covariance components and the regression model as well as the mixed model for estimating random parameters. A chapter on the robust estimation of parameters and several examples have been added to this second edition. The necessary theorems of vector and matrix algebra and the probability distributions of test statistics are derived so as to make this book self-contained. Geodesy students as well as those in the natural sciences and engineering will find the emphasis on the geodetic application of statistical models extremely useful.




Linear Models


Book Description

An insightful approach to the analysis of variance in the study of linear models Linear Models explores the theory of linear models and the dynamic relationships that these models have with Analysis of Variance (ANOVA), experimental design, and random and mixed-model effects. This one-of-a-kind book emphasizes an approach that clearly explains the distribution theory of linear models and experimental design starting from basic mathematical concepts in linear algebra. The author begins with a presentation of the classic fixed-effects linear model and goes on to illustrate eight common linear models, along with the value of their use in statistics. From this foundation, subsequent chapters introduce concepts pertaining to the linear model, starting with vector space theory and the theory of least-squares estimation. An outline of the Helmert matrix is also presented, along with a thorough explanation of how the ANOVA is created in both typical two-way and higher layout designs, ultimately revealing the distribution theory. Other important topics covered include: Vector space theory The theory of least squares estimation Gauss-Markov theorem Kronecker products Diagnostic and robust methods for linear models Likelihood approaches to estimation A discussion of Bayesian theory is also included for purposes of comparison and contrast, and numerous illustrative exercises assist the reader with uncovering the nature of the models, using both classic and new data sets. Requiring only a working knowledge of basic probability and statistical inference, Linear Models is a valuable book for courses on linear models at the upper-undergraduate and graduate levels. It is also an excellent reference for practitioners who use linear models to conduct research in the fields of econometrics, psychology, sociology, biology, and agriculture.




Animal Breeding Plans


Book Description

First published in 1943, “Animal Breeding Plans” contains a detailed guide on animal breeding designed for students with experience of genetics, embryology, breeds, and stock judging. It aims to furnish the reader with a clear understanding of the means available for improving the heredity of farm animals, especially what each possible method will or will not do well. Highly recommended for modern farmers and animal breeders. Contents include: “Origin and Domestication of Farm Animals”, “Consequences of Domestication”, “Beginning of Pedigree Breeding Methods in the United States”, “History of Animal Breeding Methods in the United States”, “Relation of the Breed Association to Breed Improvement”, “Genetic Principles in Animal Breeding”, “Mendelian Basis of Inheritance”, etc. Many vintage books such as this are increasingly scarce and expensive. It is with this in mind that we are republishing this volume now in an affordable, modern, high-quality edition complete with a specially-commissioned new introduction on farming.




Introduction to Small Area Estimation Techniques


Book Description

This guide to small area estimation aims to help users compile more reliable granular or disaggregated data in cost-effective ways. It explains small area estimation techniques with examples of how the easily accessible R analytical platform can be used to implement them, particularly to estimate indicators on poverty, employment, and health outcomes. The guide is intended for staff of national statistics offices and for other development practitioners. It aims to help them to develop and implement targeted socioeconomic policies to ensure that the vulnerable segments of societies are not left behind, and to monitor progress toward the Sustainable Development Goals.




Introduction to Variance Estimation


Book Description

Now available in paperback, this book is organized in a way that emphasizes both the theory and applications of the various variance estimating techniques. Results are often presented in the form of theorems; proofs are deleted when trivial or when a reference is readily available. It applies to large, complex surveys; and to provide an easy reference for the survey researcher who is faced with the problem of estimating variances for real survey data.