Estuarine and Coastal Fine Sediment Dynamics


Book Description

This volume is the product of the International Conference on Cohesive Sediment Transport (INTERCOH 2003) held at the Virginia Institute of Marine Science, U.S.A., during October 1-4, 2003. The topics included in this monograph range from basic research on cohesive sediment dynamics to practical applications. Also included with this book is a database that contains all experimental results as well as a comparison of numerical simulation results supported by the COSINUS project. * Provides fundamental knowledge of the dynamics of cohesive sediments * Presents practical applications of new finds on sedimentary processes * Includes valuable ready-for-use data




Estuarine and Coastal Fine Sediments Dynamics


Book Description

A product of the International Conference on Cohesive Sediment Transport (INTERCOH 2003) held at the Virginia Institute of Marine Science, USA. The topics included in this volume range from basic research on cohesive sediment dynamics to practical applications. Also included is a database of experimental results.




Coastal and Estuarine Sediment Dynamics


Book Description

Covers the movement of mud, sand, and gravel on the continental shelf in the nearshore zone, on beaches, and in estuaries. A multi-disciplinary treatment integrating marine geology, oceanography, and engineering. Presents concepts in engineering sediment distribution patterns that improve the prediction of erosion and deposition rates. Reviews background material as well as the results of recent research.




Fine Sediment Dynamics in the Marine Environment


Book Description

Cohesive sediment, or mud, is encountered in most water bodies throughout the world. Often mud is a valuable resource, synonymous with fertile land, enriching the natural environment and used as an important building material. Yet mud also hinders navigation and consequently, dredging operations have been carried out since ancient times to safeguard navigation. Unfortunately, many mud deposits are now contaminated, endangering the eco-system and increasing the costs of dredging operations. The transport and fate of mud in the environment are still poorly understood and the need for basic research remains. This text contains the proceedings of the INTERCOH-2000 conference on progress in cohesive sediment research. It was the sixth in a series of conferences initially started by Professor Ashish Mehta in 1984 as a "Workshop on Cohesive Sediment Dynamics with Special Reference to the Processes in Estuaries". During these conferences the character of the first workshop has always been maintained, that is, small scale and dedicated to the physical and engineering aspects of cohesive sediments, without parallel sessions, but with ample time for discussions during and after the presentations, and followed by a book of proceedings containing thoroughly reviewed papers. INTERCOH-2000 was integrated with the final workshop of the COSINUS project. This project was carried out as a part of the European MAST-3 programme, and almost all European cohesive sediment workers were involved. INTERCOH-2000 focused on the behaviour and modelling of concentrated benthic suspensions, i.e. high-concentrated near-bed suspensions of cohesive sediment. Special attention was paid to: sediment - turbulence interaction; flocculation and settling velocity; high-concentrated mud suspensions; processes in the bed - consolidation; processes on the bed - erosion; field observations on mud dynamics; instrumentation; and numerical modelling.




Coastal Environments


Book Description




Estuarine Cohesive Sediment Dynamics


Book Description

The background for the Workshop on Cohesive Sediment Dynamics - . !!!!!. Special Reference to Physical Processes in Estuaries is briefly outlined in Chapter I. Here I wish to acknowledge those whose support I consider to be pivotal to this under taking. My deepest appreciation goes to Cynthia Vey, whose organizational skills and dedicated effort made the completion of this volume possible. Thanks are also due to Gail Terry for workshop organization, Jean Branson for word processing and Lillean Pieter for helping with drawings. Finally, I must express my sincere appreciation to Arthur Ezra 9f the National Science Foundation for providing support (through Grant No. CEE-8401185) for the workshop, and to Hsiang Wang for depart mental encouragement. With deepest regret, I must note the untimely death of Ranjan Ariathurai, 39, on June 5, 1985, before this volume could be published. He was a guiding force to many within the small group of researchers in cohesive sediment dynamics, and his professional brilliance and inspirational personal qualities constituted the true spirit . behind the workshop. I trust this volume will serve, albeit in a small way, as a fitting memory to this spirit, and to the remarkable professional contributions Ranjan made during his short career. Professor Ray B. Krone Professor Emmanuel Partheniades Department of Civil Engineering Department of Engineering Sciences University of California University of Florida Davis, California Gainesville, Florida TABLE OF CONTENTS CHAPTER PAGE I. INTRODUCTION Ashish J. Mehta •••••••••••••••••••••••••••••••••••••••••••••••••••• 1 II.




Coastal and Estuarine Fine Sediment Processes


Book Description

Hardbound. The INTERCOH series of conferences bring together the world's leading researchers and practitioners in cohesive sediment transport processes to share recent insights. This book presents papers that examine the spectrum of fine sediment transport related science and engineering, including the basics and applications of flocculation, settling, deposition, and erosion, advanced numerical models used in engineering practice, and applications to mud flats and harbor siltation.




Examination of Estuarine Sediment Dynamics


Book Description

This dissertation investigated the dynamics of estuarine shorelines in the Albemarle-Pamlico Estuarine System (APES). Shoreline change is influenced by human activities (e.g., shoreline modification), and natural processes (e.g., waves, storms, and sea-level rise) on variable temporal and spatial scales in the coastal zone. This research examined the spatio-temporal dynamics of shoreline change, the drivers of that change, and the role of shoreline erosion in the sediment dynamics of the larger estuarine system. Historical rates of change were found to be comparable to previous studies at -0.5 ± 0.07 m yr−1. Decadal and sub-annual rates of change were highly variable over the study, both spatially and temporally. However, linear regression models indicate that the large changes in shoreline position observed in high-frequency (bi-monthly) surveys are captured within the long-term (historical) average rate of shoreline change. Simulations from a coupled hydrodynamic and wave model indicate that waves and storms (hurricanes) are important drivers of shoreline change. Wave energy along different shorelines was found to be dependent on shorezone characteristics such as shoreline orientation, wind direction and fetch, and nearshore bathymetry. The role of shoreline erosion in the sediment dynamics of the larger estuarine system was also investigated for a region of the APES, the Tar-Pamlico estuary. Shoreline erosion and shoreline modification were examined within the estuary in order to explore the significance of erosion as a source of fine sediment to the estuary. Sediment storage was also evaluated for the Tar-Pamlico estuary using rates of sediment accumulation determined from the radionuclide tracers of 210Pb and 137Cs. A fine sediment budget was constructed for the Tar-Pamlico estuary. The budget indicates that eroding wetland shorelines represent a significant (43% of total fine sediment input) source of material to the estuary. Also, the majority of fine sediment is retained within zones of accumulation within the estuary, with only about 7% potentially exported to the adjacent Pamlico Sound. Overall, this research highlights the dynamic process of estuarine shoreline change, and the role of that change in the functioning of the larger estuarine system. Coastal managers need to incorporate an understanding and accommodation of these processes into future management plans for North Carolina's estuarine shorelines.




Physical Processes in Estuaries


Book Description

In Physical Processes in Estuaries the present day knowledge of the physics of transport phenomena in estuaries and their mathematical treatment is summarized: It is divided into following parts: - Water movements in estuaries - Estuarine fronts and river plumes - Internal waves and interface stability - Fine sediment transport, aggregation of particles, settling velocity of mud flocs - Sedimentation and erosion of fine sediments. For each topic an up-to-date review and recommendations for future research are given, followed by results of original studies. Since estuarine environments are the first to be threatened by urbanization and industrial exploitation this book is an important tool for students and researchers of environmental problems as well as for consultants and water authorities.




Fine Sediment In Open Water: From Fundamentals To Modeling


Book Description

Fine Sediment in Open Water is mainly written for professional engineers working in estuaries and coastal systems. It provides the basis for a fundamental understanding of the physical, biological and chemical processes governing the transport and fate of fine sediment in open water and explains how this understanding can steer engineering studies with numerical models. This is a unique treatment of processes at a variety of spatial and temporal scales, from the micro-scale (colloid scale) to system-wide scales, and from intra-tidal time periods to decades.Beginning with the processes governing the transport and fate of fine sediment in shallow open water, the first eight chapters are dedicated to the hydrodynamic, soil mechanics and biological processes which determine fine sediment concentrations in the water column, in/on the bed and the exchange of sediment between bed and water column. The next two chapters treat the net fluxes of fine sediment as a function of asymmetries in forcing and sediment properties. These fundamental processes form the basis for the subsequent chapters on modeling in which the governing equations are presented, and tools are provided to aggregate and parameterize the various processes elaborated in the first eight chapters. Further, any numerical model study should be based on a conceptual model, as illustrated in the final five chapters, which provide examples of numerical modeling studies on the transport and fate of fine sediment in a coastal sea, an estuary, a tidal river, a lake, and around and within a harbor basin.Related Link(s)