Ethnomathematics


Book Description

In this truly one-of-a-kind book, Ascher introduces the mathematical ideas of people in traditional, or "small-scale", cultures often omitted from discussion of mathematics. Topics such as "Numbers: Words and Symbols", "Tracing Graphs in the Sand", "The Logic of Kin Relations", "Chance and Strategy in Games and Puzzles", and "The Organization and Modeling of Space" are traced in various cultures including the Inuit, Navajo, and Iroquois of North America; the Inca of South America; the Malekula, Warlpiri, Maori, and Caroline Islanders of Oceania, and the Tshokwe, Bushoong, and Kpelle of Africa. As Ascher explores mathematical ideas involving numbers, logic, spatial configuration, and the organization of these into systems and structures, readers gain both a broader understanding and anappreciation for the idease of other peoples.




Ethnomathematics


Book Description




Ethnomathematics


Book Description

Presents the emerging field of ethnomathematics from a critical perspective, challenging particular ways in which Eurocentrism permeates mathematics education and mathematics in general.




Mathematics Elsewhere


Book Description

Mathematics Elsewhere is a fascinating and important contribution to a global view of mathematics. Presenting mathematical ideas of peoples from a variety of small-scale and traditional cultures, it humanizes our view of mathematics and expands our conception of what is mathematical. Through engaging examples of how particular societies structure time, reach decisions about the future, make models and maps, systematize relationships, and create intriguing figures, Marcia Ascher demonstrates that traditional cultures have mathematical ideas that are far more substantial and sophisticated than is generally acknowledged. Malagasy divination rituals, for example, rely on complex algebraic algorithms. And some cultures use calendars far more abstract and elegant than our own. Ascher also shows that certain concepts assumed to be universal--that time is a single progression, for instance, or that equality is a static relationship--are not. The Basque notion of equivalence, for example, is a dynamic and temporal one not adequately captured by the familiar equal sign. Other ideas taken to be the exclusive province of professionally trained Western mathematicians are, in fact, shared by people in many societies. The ideas discussed come from geographically varied cultures, including the Borana and Malagasy of Africa, the Tongans and Marshall Islanders of Oceania, the Tamil of South India, the Basques of Western Europe, and the Balinese and Kodi of Indonesia. This book belongs on the shelves of mathematicians, math students, and math educators, and in the hands of anyone interested in traditional societies or how people think. Illustrating how mathematical ideas play a vital role in diverse human endeavors from navigation to social interaction to religion, it offers--through the vehicle of mathematics--unique cultural encounters to any reader.




Current and Future Perspectives of Ethnomathematics as a Program


Book Description

This survey on the modernity of ethnomathematics addresses numerous themes related to both ethnomathematics and mathematics education. It offers a broader view of mathematics, including ideas, procedures, concepts, processes, methods, and practices rooted in distinct cultural environments. In addition, by reflecting on the social and political dimensions of ethnomathematics, another important aspect of this research program is the development of innovative approaches for a dynamic and glocalized society. Ethnomathematics recognizes that members of different cultures develop unique mathematical techniques, methods, and explanations that allow for an alternative understanding and transformation of societal norms. The theoretical basis of ethnomathematics offers a valid alternative to traditional studies of history, philosophy, cognition, and pedagogical aspects of mathematics. The current agenda for ethnomathematics is to continue an ongoing, progressive trajectory that contributes to the achievement of social justice, peace, and dignity for all. The debates outlined in this book share a few of the key ideas that provide for a clearer understanding of the field of ethnomathematics and its current state of the art by discussing its pedagogical actions, its contributions for teacher education, and its role in mathematics education.




Encyclopedia of Mathematics Education


Book Description

The Encyclopedia of Mathematics Education is a comprehensive reference text, covering every topic in the field with entries ranging from short descriptions to much longer pieces where the topic warrants more elaboration. The entries provide access to theories and to research in the area and refer to the leading publications for further reading. The Encyclopedia is aimed at graduate students, researchers, curriculum developers, policy makers, and others with interests in the field of mathematics education. It is planned to be 700 pages in length in its hard copy form but the text will subsequently be up-dated and developed on-line in a way that retains the integrity of the ideas, the responsibility for which will be in the hands of the Editor-in-Chief and the Editorial Board. This second edition will include additional entries on: new ideas in the politics of mathematics education, working with minority students, mathematics and art, other cross-disciplinary studies, studies in emotions and mathematics, new frameworks for analysis of mathematics classrooms, and using simulations in mathematics teacher education. Existing entries will be revised and new entries written. Members of the international mathematics education research community will be invited to propose new entries. Editorial Board: Bharath Sriraman Melony Graven Yoshinori Shimizu Ruhama Even Michele Artigue Eva Jablonka Wish to Become an Author? Springer's Encyclopedia of Mathematics Education's first edition was published in 2014. The Encyclopedia is a "living" project and will continue to accept articles online as part of an eventual second edition. Articles will be peer-reviewed in a timely manner and, if found acceptable, will be immediately published online. Suggested articles are, of course, welcome. Feel encouraged to think about additional topics that we overlooked the first time around, and to suggest colleagues (including yourself!) who will want to write them. Interested new authors should contact the editor in chief, Stephen Lerman, at [email protected], for more specific instructions.




Reckonings


Book Description

Insights from the history of numerical notation suggest that how humans write numbers is an active choice involving cognitive and social factors. Over the past 5,000 years, more than 100 methods of numerical notation--distinct ways of writing numbers--have been developed and used by specific communities. Most of these are barely known today; where they are known, they are often derided as cognitively cumbersome and outdated. In Reckonings, Stephen Chrisomalis considers how humans past and present use numerals, reinterpreting historical and archaeological representations of numerical notation and exploring the implications of why we write numbers with figures rather than words.




Mathematical Enculturation


Book Description

Mathematics is in the unenviable position of being simultaneously one of the most important school subjects for today's children to study and one of the least well understood. Its reputation is awe-inspiring. Everybody knows how important it is and everybody knows that they have to study it. But few people feel comfortable with it; so much so that it is socially quite acceptable in many countries to confess ignorance about it, to brag about one's incompe tence at doing it, and even to claim that one is mathophobic! So are teachers around the world being apparently legal sadists by inflicting mental pain on their charges? Or is it that their pupils are all masochists, enjoying the thrill of self-inflicted mental torture? More seriously, do we really know what the reasons are for the mathematical activity which goes on in schools? Do we really have confidence in our criteria for judging what's important and what isn't? Do we really know what we should be doing? These basic questions become even more important when considered in the context of two growing problem areas. The first is a concern felt in many countries about the direction which mathematics education should take in the face of the increasing presence of computers and calculator-related technol ogy in society.




Cultural Development of Mathematical Ideas


Book Description

Drawing upon field studies conducted in 1978, 1980 and 2001 with the Oksapmin, a remote Papua New Guinea group, Geoffrey B. Saxe traces the emergence of new forms of numerical representations and ideas in the social history of the community. In traditional life, the Oksapmin used a counting system that makes use of twenty-seven parts of the body; there is no evidence that the group used arithmetic in prehistory. As practices of economic exchange and schooling have shifted, children and adults unwittingly reproduced and altered the system in order to solve new kinds of numerical and arithmetical problems, a process that has led to new forms of collective representations in the community. While Dr Saxe's focus is on the Oksapmin, the insights and general framework he provides are useful for understanding shifting representational forms and emerging cognitive functions in any human community.




Mathematics Across Cultures


Book Description

Mathematics Across Cultures: A History of Non-Western Mathematics consists of essays dealing with the mathematical knowledge and beliefs of cultures outside the United States and Europe. In addition to articles surveying Islamic, Chinese, Native American, Aboriginal Australian, Inca, Egyptian, and African mathematics, among others, the book includes essays on Rationality, Logic and Mathematics, and the transfer of knowledge from East to West. The essays address the connections between science and culture and relate the mathematical practices to the cultures which produced them. Each essay is well illustrated and contains an extensive bibliography. Because the geographic range is global, the book fills a gap in both the history of science and in cultural studies. It should find a place on the bookshelves of advanced undergraduate students, graduate students, and scholars, as well as in libraries serving those groups.