Pre-mRNA Processing


Book Description

he past fifteen years have seen tremendous growth in our understanding of T the many post-transcriptional processing steps involved in producing func tional eukaryotic mRNA from primary gene transcripts (pre-mRNA). New processing reactions, such as splicing and RNA editing, have been discovered and detailed biochemical and genetic studies continue to yield important new insights into the reaction mechanisms and molecular interactions involved. It is now apparent that regulation of RNA processing plays a significant role in the control of gene expression and development. An increased understanding of RNA processing mechanisms has also proved to be of considerable clinical importance in the pathology of inherited disease and viral infection. This volume seeks to review the rapid progress being made in the study of how mRNA precursors are processed into mRNA and to convey the broad scope of the RNA field and its relevance to other areas of cell biology and medicine. Since one of the major themes of RNA processing is the recognition of specific RNA sequences and structures by protein factors, we begin with reviews of RNA-protein interactions. In chapter 1 David Lilley presents an overview of RNA structure and illustrates how the structural features of RNA molecules are exploited for specific recognition by protein, while in chapter 2 Maurice Swanson discusses the structure and function of the large family of hnRNP proteins that bind to pre-mRNA. The next four chapters focus on pre-mRNA splicing.




Eukaryotic MRNA Processing


Book Description

This volume focuses on the major aspects of post-transcriptional mRNA processing in the nucleus of eukaryotic cells. Each of the described mRNA reactions is required for proper gene expression and can also serve as a control point for regulating the expression of many genes, for example duringembryonic development or in different cell types. The different chapters review the assembly of newly synthesized nuclear mRNA transcripts into hnRNP particles and catalytically active spliceosomes; the structure and mechanism of action of small nuclear ribonucleoprotein particles and proteinfactors that catalyse pre-mRNA splicing in mammalian cells and in yeast; the regulation of gene expression and generation of protein isoform diversity by alternative splicing; the mechanisms of 3' end cleavage and polyadenylation; the architecture of the cell nucleus in relation to these processesand to the localization of the relevant substrates and factors; the diverse mechanisms of RNA processing by ribozymes and their potential relevance for nuclear mRNA processing; the mechanism of spliced-leader addition by trans-splicing in nematodes and trypanosomes; and the process ofinsertion/deletion mRNA editing in kinetoplasmid protozoa. In each chapter, leading researchers have provided detailed, critical reviews of the history, experimental approaches, major advances, current ideas and models, as well as future directions, for each of these active areas of research.




Principles of Biology


Book Description

The Principles of Biology sequence (BI 211, 212 and 213) introduces biology as a scientific discipline for students planning to major in biology and other science disciplines. Laboratories and classroom activities introduce techniques used to study biological processes and provide opportunities for students to develop their ability to conduct research.




Biology for AP ® Courses


Book Description

Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.




Posttranscriptional Gene Regulation


Book Description

2.4 Regulation of Transcription by Termination2.4.1 Transcription Attenuation, Promoter Upstream/Associated Transcription, and Pausing of RNApII; 2.4.2 Alternative Polyadenylation and Termination; 2.5 Mechanisms of Termination by Other RNA Polymerases; 2.6 Future Perspectives; Acknowledgments; References; 3: Posttranscriptional Gene Regulation by an Editor: ADAR and its Role in RNA Editing; 3.1 Introduction; 3.2 The RNA Editing Kinship; 3.3 The ADAR Gene Family; 3.4 The Role of RNA in the A-to-I Editing Mechanism; 3.5 Splice Site Alterations.




Concepts of Biology


Book Description

Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.




Cell Biology by the Numbers


Book Description

A Top 25 CHOICE 2016 Title, and recipient of the CHOICE Outstanding Academic Title (OAT) Award. How much energy is released in ATP hydrolysis? How many mRNAs are in a cell? How genetically similar are two random people? What is faster, transcription or translation?Cell Biology by the Numbers explores these questions and dozens of others provid







The DNA, RNA, and Histone Methylomes


Book Description

This book reviews the chemical, regulatory, and physiological mechanisms of protein arginine and lysine methyltransferases, as well as nucleic acid methylations and methylating enzymes. Protein and nucleic acid methylation play key and diverse roles in cellular signalling and regulating macromolecular cell functions. Protein arginine and lysine methyltransferases are the predominant enzymes that catalyse S-adenosylmethionine (SAM)-dependent methylation of protein substrates. These enzymes catalyse a nucleophilic substitution of a methyl group to an arginine or lysine side chain nitrogen (N) atom. Cells also have additional protein methyltransferases, which target other amino acids in peptidyl side chains or N-termini and C-termini, such as glutamate, glutamine, and histidine. All these protein methyltransferases use a similar mechanism. In contrast, nucleic acids (DNA and RNA) are substrates for methylating enzymes, which employ various chemical mechanisms to methylate nucleosides at nitrogen (N), oxygen (O), and carbon (C) atoms. This book illustrates how, thanks to there ability to expand their repertoire of functions to the modified substrates, protein and nucleic acid methylation processes play a key role in cells.




Spliceosomal Pre-mRNA Splicing


Book Description

Providing a guide to classical experimental approaches to decipher splicing mechanisms and experimental strategies that rely on novel multi-disciplinary approaches, Spliceosomal Pre-mRNA Splicing: Methods and Protocols describes the theory of alternative pre-mRNA splicing in seven introductory chapters and then introduces protocols and their theoretical background relevant for a variety of experimental research. These protocol chapters cover basic methods to detect splicing events, analyses of alternative pre-mRNA splicing in vitro and in vivo manipulation of splicing events and high-throughput and bioinformatic analyses of alternative splicing. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols and tips on troubleshooting and avoiding known pitfalls. Comprehensive and practical, Spliceosomal Pre-mRNA Splicing: Methods and Protocols will aid newcomers and seasoned molecular biologists in understanding the fascinating world of alternative splicing with the ultimate goal of paving the way for many new discoveries to come.