Proceedings in Print


Book Description




Organic Thin Film Transistor Integration


Book Description

Research on organic electronics (or plastic electronics) is driven by the need to create systems that are lightweight, unbreakable, and mechanically flexible. With the remarkable improvement in the performance of organic semiconductor materials during the past few decades, organic electronics appeal to innovative, practical, and broad-impact applications requiring large-area coverage, mechanical flexibility, low-temperature processing, and low cost. Thus, organic electronics appeal to a broad range of electronic devices and products including transistors, diodes, sensors, solar cells, lighting, displays, and electronic identification and tracking devices A number of commercial opportunities have been identified for organic thin film transistors (OTFTs), ranging from flexible displays, electronic paper, radio-frequency identification (RFID) tags, smart cards, to low-cost disposable electronic products, and more are continually being invented as the technology matures. The potential applications for "plastic electronics" are huge but several technological hurdles must be overcome. In many of these applications, transistor serves as a fundamental building block to implement the necessary electronic functionality. Hence, research in organic thin film transistors (OTFTs) or organic field effect transistors (OFETs) is eminently pertinent to the development and realization of organic electronics. This book presents a comprehensive investigation of the production and application of a variety of polymer based transistor devices and circuits. It begins with a detailed overview of Organic Thin Film Transistors (OTFTs) and discusses the various possible fabrication methods reported so far. This is followed by two major sections on the choice, optimization and implementation of the gate dielectric material to be used. Details of the effects of processing on the efficiency of the contacts are then provided. The book concludes with a chapter on the integration of such devices to produce a variety of OTFT based circuits and systems. The key objective is to examine strategies to exploit existing materials and techniques to advance OTFT technology in device performance, device manufacture, and device integration. Finally, the collective knowledge from these investigations facilitates the integration of OTFTs into organic circuits, which is expected to contribute to the development of new generation of all-organic displays for communication devices and other pertinent applications. Overall, a major outcome of this work is that it provides an economical means for organic transistor and circuit integration, by enabling the use of a well-established PECVD infrastructure, while not compromising the performance of electronics. The techniques established here are not limited to use in OTFTs only; the organic semiconductor and SiNx combination can be used in other device structures (e.g., sensors, diodes, photovoltaics). Furthermore, the approach and strategy used for interface optimization can be extended to the development of other materials systems.







Polymer Sensors and Actuators


Book Description

Written by pioneers in the field, this book covers optical, gas, taste, and other sensing systems using various kinds of polymers. It provides all the necessary background information and science to develop a basic understanding of the field, its supporting technologies, and current applications.










Solar Cells


Book Description

The first book of this four-volume edition is dedicated to one of the most promising areas of photovoltaics, which has already reached a large-scale production of the second-generation thin-film solar modules and has resulted in building the powerful solar plants in several countries around the world. Thin-film technologies using direct-gap semiconductors such as CIGS and CdTe offer the lowest manufacturing costs and are becoming more prevalent in the industry allowing to improve manufacturability of the production at significantly larger scales than for wafer or ribbon Si modules. It is only a matter of time before thin films like CIGS and CdTe will replace wafer-based silicon solar cells as the dominant photovoltaic technology. Photoelectric efficiency of thin-film solar modules is still far from the theoretical limit. The scientific and technological problems of increasing this key parameter of the solar cell are discussed in several chapters of this volume.




Ultra-Thin Sensors and Data Conversion Techniques for Hybrid System-in-Foil


Book Description

This book reports on the design, fabrication and characterization of a set of flexible electronic components, including on-foil sensors, organic thin-film transistors and ultra-thin chips. The core of the work is on showing how to combine high-performance integrated circuits with large-area electronic components on a single polymeric foil, to realize smart electronic systems for different applications, such as temperature, humidity and mechanical stress sensors. The book offers an extensive introduction to Hybrid System-in-Foil technology (HySiF), and related on-chip/on-foil passive and active components. It presents six case studies designed to highlight key HySiF challenges, together with the methodology to address those challenges. Last but not least, it describes the development of a reconfigurable, energy-efficient Analog-to-Digital Converter for HySiF. All in all, this book provides readers with extensive information on the state of the art in the design and characterization of integrated circuits and hybrid electronic systems on flexible polymeric substrates. By describing significant advances in organic thin-film transistor technology, this work is expected to pave the way to future developments in the area of energy-efficient smart sensors and integrated circuits.