Evaluation of Text Summaries Based on Linear Optimization of Content Metrics


Book Description

This book provides a comprehensive discussion and new insights about linear optimization of content metrics to improve the automatic Evaluation of Text Summaries (ETS). The reader is first introduced to the background and fundamentals of the ETS. Afterward, state-of-the-art evaluation methods that require or do not require human references are described. Based on how linear optimization has improved other natural language processing tasks, we developed a new methodology based on genetic algorithms that optimize content metrics linearly. Under this optimization, we propose SECO-SEVA as an automatic evaluation metric available for research purposes. Finally, the text finishes with a consideration of directions in which automatic evaluation could be improved in the future. The information provided in this book is self-contained. Therefore, the reader does not require an exhaustive background in this area. Moreover, we consider this book the first one that deals with the ETS in depth.




Explainable AI Within the Digital Transformation and Cyber Physical Systems


Book Description

This book presents Explainable Artificial Intelligence (XAI), which aims at producing explainable models that enable human users to understand and appropriately trust the obtained results. The authors discuss the challenges involved in making machine learning-based AI explainable. Firstly, that the explanations must be adapted to different stakeholders (end-users, policy makers, industries, utilities etc.) with different levels of technical knowledge (managers, engineers, technicians, etc.) in different application domains. Secondly, that it is important to develop an evaluation framework and standards in order to measure the effectiveness of the provided explanations at the human and the technical levels. This book gathers research contributions aiming at the development and/or the use of XAI techniques in order to address the aforementioned challenges in different applications such as healthcare, finance, cybersecurity, and document summarization. It allows highlighting the benefits and requirements of using explainable models in different application domains in order to provide guidance to readers to select the most adapted models to their specified problem and conditions. Includes recent developments of the use of Explainable Artificial Intelligence (XAI) in order to address the challenges of digital transition and cyber-physical systems; Provides a textual scientific description of the use of XAI in order to address the challenges of digital transition and cyber-physical systems; Presents examples and case studies in order to increase transparency and understanding of the methodological concepts.




Pattern Recognition


Book Description

This book constitutes the proceedings of the 14th Mexican Conference on Pattern Recognition, MCPR 2022, which was held in planned to be held Ciudad Juárez, Mexico, in June 2022. The 33 papers presented in this volume were carefully reviewed and selected from 66 submissions. They are organized in the following topical sections: pattern recognition techniques; neural networks and deep learning; image and signal processing and analysis; natural language processing and recognition; robotics and remote sensing applications of pattern recognition; medical applications of pattern recognition.




MultiMedia Modeling


Book Description

The two-volume set LNCS 10704 and 10705 constitutes the thoroughly refereed proceedings of the 24th International Conference on Multimedia Modeling, MMM 2018, held in Bangkok, Thailand, in February 2018. Of the 185 full papers submitted, 46 were selected for oral presentation and 28 for poster presentation; in addition, 5 papers were accepted for Multimedia Analytics: Perspectives, Techniques, and Applications, 12 extended abstracts for demonstrations ,and 9 accepted papers for Video Browser Showdown 2018. All papers presented were carefully reviewed and selected from 185 submissions.




Artificial Intelligence and Evolutionary Computations in Engineering Systems


Book Description

The volume is a collection of high-quality peer-reviewed research papers presented in the International Conference on Artificial Intelligence and Evolutionary Computation in Engineering Systems (ICAIECES 2016) held at SRM University, Chennai, Tamilnadu, India. This conference is an international forum for industry professionals and researchers to deliberate and state their research findings, discuss the latest advancements and explore the future directions in the emerging areas of engineering and technology. The book presents original work and novel ideas, information, techniques and applications in the field of communication, computing and power technologies.




Evaluating Natural Language Processing Systems


Book Description

This book is about the patterns of connections between brain structures. It reviews progress on the analysis of neuroanatomical connection data and presents six different approaches to data analysis. The results of their application to data from cat and monkey cortex are explored. This volume sheds light on the organization of the brain that is specified by its wiring.




Web Content Credibility


Book Description

This book introduces readers to Web content credibility evaluation and evaluation support. It highlights empirical research and establishes a solid foundation for future research by presenting methods of supporting credibility evaluation of online content, together with publicly available datasets for reproducible experimentation, such as the Web Content Credibility Corpus. The book is divided into six chapters. After a general introduction in Chapter 1, including a brief survey of credibility evaluation in the social sciences, Chapter 2 presents definitions of credibility and related concepts of truth and trust. Next, Chapter 3 details methods, algorithms and user interfaces for systems supporting Web content credibility evaluation. In turn, Chapter 4 takes a closer look at the credibility of social media, exemplified in sections on Twitter, Q&A systems, and Wikipedia, as well as fake news detection. In closing, Chapter 5 presents mathematical and simulation models of credibility evaluation, before a final round-up of the book is provided in Chapter 6. Overall, the book reviews and synthesizes the current state of the art in Web content credibility evaluation support and fake news detection. It provides researchers in academia and industry with both an incentive and a basis for future research and development of Web content credibility evaluation support services.




Beyond the Worst-Case Analysis of Algorithms


Book Description

Introduces exciting new methods for assessing algorithms for problems ranging from clustering to linear programming to neural networks.




Advances in Automatic Text Summarization


Book Description

ntil now there has been no state-of-the-art collection of themost important writings in automatic text summarization. This bookpresents the key developments in the field in an integrated frameworkand suggests future research areas. With the rapid growth of the World Wide Web and electronic information services, information is becoming available on-line at an incredible rate. One result is the oft-decried information overload. No one has time to read everything, yet we often have to make critical decisions based on what we are able to assimilate. The technology of automatic text summarization is becoming indispensable for dealing with this problem. Text summarization is the process of distilling the most important information from a source to produce an abridged version for a particular user or task. Until now there has been no state-of-the-art collection of the most important writings in automatic text summarization. This book presents the key developments in the field in an integrated framework and suggests future research areas. The book is organized into six sections: Classical Approaches, Corpus-Based Approaches, Exploiting Discourse Structure, Knowledge-Rich Approaches, Evaluation Methods, and New Summarization Problem Areas. Contributors D. A. Adams, C. Aone, R. Barzilay, E. Bloedorn, B. Boguraev, R. Brandow, C. Buckley, F. Chen, M. J. Chrzanowski, H. P. Edmundson, M. Elhadad, T. Firmin, R. P. Futrelle, J. Gorlinsky, U. Hahn, E. Hovy, D. Jang, K. Sparck Jones, G. M. Kasper, C. Kennedy, K. Kukich, J. Kupiec, B. Larsen, W. G. Lehnert, C. Lin, H. P. Luhn, I. Mani, D. Marcu, M. Maybury, K. McKeown, A. Merlino, M. Mitra, K. Mitze, M. Moens, A. H. Morris, S. H. Myaeng, M. E. Okurowski, J. Pedersen, J. J. Pollock, D. R. Radev, G. J. Rath, L. F. Rau, U. Reimer, A. Resnick, J. Robin, G. Salton, T. R. Savage, A. Singhal, G. Stein, T. Strzalkowski, S. Teufel, J. Wang, B. Wise, A. Zamora




Automated Evaluation of Text and Discourse with Coh-Metrix


Book Description

Coh-Metrix is among the broadest and most sophisticated automated textual assessment tools available today. Automated Evaluation of Text and Discourse with Coh-Metrix describes this computational tool, as well as the wide range of language and discourse measures it provides. Part I of the book focuses on the theoretical perspectives that led to the development of Coh-Metrix, its measures, and empirical work that has been conducted using this approach. Part II shifts to the practical arena, describing how to use Coh-Metrix and how to analyze, interpret, and describe results. Coh-Metrix opens the door to a new paradigm of research that coordinates studies of language, corpus analysis, computational linguistics, education, and cognitive science. This tool empowers anyone with an interest in text to pursue a wide array of previously unanswerable research questions.