Evaluation of the Potential Impact of Electrochromic Windows on the Energy Performance of Commercial Buildings


Book Description

Electrochromic windows appear to be the most promising emerging technology to improve building performance as they provide greater control of solar gains; they have a potentially significant impact on the indoor visual environment and energy requirements of commercial buildings. The research work presented in this thesis, which is accomplished using computer simulation, proposes to undertake an engineering evaluation of the performance of electrochromic glazings and to advance knowledge in the field by developing a new model to simulate their control. First, the performance of an experimental electrochromic coating is compared relative to conventional glazing types. The APPLIED FILM LAMINATOR and WINDOW 4.1 computer programs are used to evaluate the global parameters characterizing window performance (solar and visible transmittance, U-value, and solar heat gain coefficient). A critical evaluation of existing control strategies is performed using DOE-2.1E to study the effect of several driving variables for switching on the cooling load of an existing large commercial building. The present capabilities of the DOE program are expanded using the Functional Values approach in order to study the effect of the electrochromic glazing switching time for the building's perimeter zones. Since electrochromic windows affect both building energy consumption and visual quality, the optimization of the switching time is formulated as a multi-objective model with two conflicting objectives (energy and visual quality). Pareto optimum solutions are shown for different weighting coefficients applied to both objectives. This approach constitutes the basis of an automated optimized electrochromic glazing switching strategy that is developed and incorporated in the DOE-2.1E program.




The Energy-savings Potential of Electrochromic Windows in the UScommercial Buildings Sector


Book Description

Switchable electrochromic (EC) windows have been projected to significantly reduce the energy use of buildings nationwide. This study quantifies the potential impact of electrochromic windows on US primary energy use in the commercial building sector and also provides a broader database of energy use and peak demand savings for perimeter zones than that given in previous LBNL simulation studies. The DOE-2.1E building simulation program was used to predict the annual energy use of a three-story prototypical commercial office building located in five US climates and 16 California climate zones. The energy performance of an electrochromic window controlled to maintain daylight illuminance at a prescribed setpoint level is compared to conventional and the best available commercial windows as well as windows defined by the ASHRAE 90.1-1999 and California Title 24-2005 Prescriptive Standards. Perimeter zone energy use and peak demand savings data by orientation, window size, and climate are given for windows with interior shading, attached shading, and horizon obstructions (to simulate an urban environment). Perimeter zone primary energy use is reduced by 10-20% in east, south, and west zones in most climates if the commercial building has a large window-to-wall area ratio of 0.60 compared to a spectrally selective low-e window with daylighting controls and no interior or exterior shading. Peak demand for the same condition is reduced by 20-30%. The emerging electrochromic window with daylighting controls is projected to save approximately 91.5-97.3 10{sup 12} Btu in the year 2030 compared to a spectrally selective low-E window with manually-controlled interior shades and no daylighting controls if it reaches a 40% market penetration level in that year.




Energy Performance Analysis of Prototype Electrochromic Windows


Book Description

This paper presents the results of a study investigating the energy performance of three newly developed prototype electrochromic devices. The DOE-2.1 E energy simulation program was used to analyze the annual cooling, lighting, and total electric energy use and peak demand as a function of window type and size. The authors simulated a prototypical commercial office building module located in the cooling-dominated locations of Phoenix, AZ and Miami, FL. Heating energy use was also studied in the heating-dominated location of Madison, WI. Daylight illuminance was used to control electrochromic state-switching. Two types of window systems were analyzed; i.e., the outer pane electrochromic glazing was combined with either a conventional low-E or a spectrally selective inner pane. The properties of the electrochromic glazings are based on measured data of new prototypes developed as part of a cooperative DOE-industry program. The results show the largest difference in annual electric energy performance between the different window types occurs in Phoenix and is about 6.5 kWh/m2 floor area (0.60 kWh/ft2) which can represent a cost of about $.52/m2 ($.05/ft2) using electricity costing $.08/kWh. In heating-dominated locations, the electrochromic should be maintained in its bleached state during the heating season to take advantage of beneficial solar heat gain which would reduce the amount of required heating. This also means that the electrochromic window with the largest solar heat gain coefficient is best.










Electrochromic Materials and Devices


Book Description

Electrochromic materials can change their properties under the influence of an electrical voltage or current. Different classes of materials show this behavior such as transition metal oxides, conjugated polymers, metal-coordinated complexes and organic molecules. As the color change is persistent, the electric field needs only to be applied to initiate the switching, allowing for applications such as low-energy consumption displays, light-adapting mirrors in the automobile industry and smart windows for which the amount of transmitted light and heat can be controlled. The first part of this book describes the different classes and processing techniques of electrochromic materials. The second part highlights nanostructured electrochromic materials and device fabrication, and the third part focuses on the applications such as smart windows, adaptive camouflage, biomimicry, wearable displays and fashion. The last part rounds off the book by device case studies and environmental impact issues.




Analysis of Life Cycle Costs and Energy Savings of Electrochromic Glazing for an Office Building


Book Description

Building Envelope includes walls, roofs and openings, which react to the outdoor environmental condition. Today, with the increasing use of glass in building envelope, the energy usage of the buildings is increasing, especially in the offices and commercial buildings. Use of right glass type and control triggers helps to optimize the energy use, by tradeoff between optical and thermal properties. The part of the research looks at the different control triggers and its range that governs the use of electrochromic glass to regulate the energy usage in building. All different control trigger that can be possibly used for regulating the clear and tint state of glass were analyzed with most appropriate range. Its range was triggered such that 80% time of the glass is trigger between the ranges. The other building parameters like window wall ratio and orientations were also investigated. The other half of the research study looks into the feasibility of using the Electrochromic windows, as it is ought to be the main factor governing the market usage of Electrochromic windows and to investigate the possible ways to make it feasible. Different LCC parameters were studied to make it market feasible product. This study shows that installing this technology with most appropriate trigger range can reduce annual building energy consumption from 6-8% but still cost of the technology is 3 times the ASHRAE glass, which results in 70-90 years of payback. This study concludes that south orientation saves up to 3-5% of energy and 4-6% of cooling tons while north orientation gives negligible saving using EC glass. LCC parameters show that there is relative change in increasing the net saving for different parameters but none except 50% of the present glass cost is the possible option where significant change is observed.




Final Report on the Energy Edge Impact Evaluation of 28 New, Low-energy Commercial Buildings


Book Description

This report presents the findings of the Energy Edge Impact Evaluation. It is the fourth and final report in a series of project impact evaluation reports. Energy Edge is a research-oriented demonstration of energy efficiency in 28 new commercial buildings. Beginning in 1985,the project, sponsored by the Bonneville Power Administration (BPA), was developed to evaluate the potential for electricity conservation in new commercial buildings. By focusing on the construction of new commercial buildings, Energy Edge meets the region's goal of capturing otherwise lost opportunities to accomplish energy conservation. That is, the best time to add an energy-efficiency measure to a building is during the construction phase.




Near-Infrared Selective Plasmonic Electrochromic Windows


Book Description

Residential and commercial buildings represent a prime opportunity to improve energy efficiency and sustainability worldwide. Currently, lighting and thermal management within buildings account for 20% of the United State's yearly energy consumption. Several approaches, such as solid state lighting, energy efficient HVAC systems, and improved insulation, are currently being investigated to help mitigate building energy consumption. The work described in this dissertation focuses on studying the use of dynamic window coatings on commercial and residential buildings. Specifically, this work focuses on near infrared selective electrochromic window coatings that optimize the amount of solar heat that enters a building without affecting the amount of solar light. Electrochromic window coatings are based on an electrochemical cell architecture that is composed of two electrochromic layers separated by ion conducting electrolyte. During operation, an applied bias is used to control the optical properties of both electrochromic layers by shuffling a small amount of current between the counter and working electrode. In a negative bias, the window coatings dim to a dark state. If you reverse the bias, the window coatings go back to a transparent state. Intermediate states can be achieved by controlling the value of the bias applied. Unfortunately, traditional electrochromic windows require a change in visible transmittance to gain energy savings within buildings. This change affects the amount of solar daylighting and inadvertently leads to an increase in electrical lighting during the day. This work focuses on developing a nanocrystal based plasmonic electrochromic window that only modulates the near infrared portion of light while remaining visibly transparent. Taking advantage of localized surface plasmon absorption, this work approaches dynamic window coatings in a new fashion. To date, no near infrared selective electrochromic windows exist in the literature. To achieve near infrared selective modulation, thin film layers of tin doped indium oxide (ITO) and alumnium doped zinc oxide (AZO) nanocrystal films were investigated as a potential electrochromic layers. A colloidal synthetic technique was used to generate concentrated inks of both ITO and AZO nanocrystals. Thin films of ITO and AZO nanocrystals where fabricated via spin casting and tested in electrochemical half cells. Prior to testing, extensive post processing techniques were investigated to develop transparent conductive films. During optimization, variations in nanocrystal size, layer thickness, dopant concentration and electrolyte were studied. For an optimized ITO film, 35% solar near infrared modulation was achieved while maintaining less than 6% modulation in solar insolation visible to the human eye. Optimized AZO nanocrystal films achieved 42% solar near infrared modulation with no change in solar insolation visible to the human eye. Extensive models where built to elucidate the physical mechanism used to achieve this solar modulation. Computer simulations were developed to quantify the energy performance of buildings with dynamic near infrared selective windows. This model only quantifies thermal savings and establishes the ground work for potential savings in solar daylighting. The model shows that optimized near infrared selective coatings achieve 15% and 10% energy savings in warm climate regions and cold climate regions respectively. Overall, the focus of this work sets the stage for advanced plasmonic electrochromic films that not only enhance the performance of dynamic windows but introduce a new technique for reducing building energy consumption worldwide.