Droplet Wetting and Evaporation


Book Description

Droplet Wetting and Evaporation provides engineers, students, and researchers with the first comprehensive guide to the theory and applications of droplet wetting and evaporation. Beginning with a relevant theoretical background, the book moves on to consider specific aspects, including heat transfer, flow instabilities, and the drying of complex fluid droplets. Each chapter covers the principles of the subject, addressing corresponding practical issues and problems. The text is ideal for a broad range of domains, from aerospace and materials, to biomedical applications, comprehensively relaying the challenges and approaches from the different communities leading the way in droplet research and development. - Provides a broad, cross-subject coverage of theory and application that is ideal for engineers, students and researchers who need to follow all major developments in this interdisciplinary field - Includes comprehensive discussions of heat transfer, flow instabilities, and the drying of complex fluid droplets - Begins with an accessible summary of fundamental theory before moving on to specific areas such as heat transfer, flow instabilities, and the drying of complex fluid droplets




Evaporation of Water With Emphasis on Applications and Measurements


Book Description

The loss of water from lakes, rivers, oceans, vegetation, and the earth, as well as man-made structures such as reservoirs and irrigation conduits, is a major concern of hydrologists and irrigation specialists. This loss, compounded by the lack of usable water in some areas, indicates a need for field and laboratory research that will contribute to the understanding of the processes and parameters that comprise and contribute to evaporation.This book emphasizes the process of the air-water interface and discusses such important topics as evaporation and condensation coefficients of water, heat and mass transfer, surface temperature, interfacial tension, convection, diffusion, thermal gradients, wind-generated waves, and the roles that these processes play in evaporation. The book also discusses subjects such as methods for suppressing evaporation using films, water vapor distribution, wind tunnel investigations, evaporation from water drops, preparation of pure water, molecular diffusion, the eddy-correlation method, and evaporation estimation methods. The book will be of considerable value to hydrologists, irrigation specialists, meteorologists, civil engineers, chemical engineers, hydraulic engineers, water resources specialists, water conservation specialists, geophysicists, environmental engineers, and anyone interested in understanding the evaporation of water and its consequences.




Evaporation and Evapotranspiration


Book Description

The book is a thorough presentation of theoretical and applied aspects of the evaporation and evapotranspiration process supported by data from experimental studies. It is written in a way that the theoretical background of evaporation and evapotranspiration estimation is presented in a simplified manner, comprehensive to most technical readers. The book deals with details of meteorological parameters and monitoring sensors which are needed for estimating evaporation and evapotranspiration. Errors in meteorological parameter measurements are also presented. Estimation errors, strengths, weaknesses and applicability of a wide range of evaporation and evapotranspiration estimation methods are presented along with samples of application to a certain region. Application of newer simpler methods is presented. A new technology, remote sensing application to evaporation and evapotranspiration estimation, is presented. The latest interest in the subject, climate change and evapotranspiration is presented in the last chapter. This book will be beneficial to students, hydrologists, engineers, meteorologists, water managers and others.




Evaporation into the Atmosphere


Book Description

The phenomenon of evaporation in the natural environment is of interest in various diverse disciplines. This book is an attempt to present a coherent and organized introduction to theoretical concepts and relationships useful in analyzing this phe nomenon, and to give an outline of their history and their application. The main objective is to provide a better understanding of evaporation, and to connect some of the approaches and paradigms, that have been developed in different disciplines concerned with this phenomenon. The book is intended for professional scientists and engineers, who are active in hydrology, meteorology, agronomy, oceanography, climatology and related environ mental fields, and who wish to study prevailing concepts on evaporation. At the same time, I hope that the book will be useful to workers in fluid dynamics, who want to become acquainted with applications to an important and interesting natural phenomenon. As suggested in its subtitle, the book consists of three major parts. The first, consisting of Chapters I and 2, gives a general ouline of the problem and a history of the theories of evaporation from ancient times through the end of the nineteenth century. This history is far from exhaustive, but it sket~hes the background and the ideas that led directly to the scientific revolution in Europe and, ultimately, to our present-day knowledge.




Kinetics of Evaporation


Book Description

This monograph discusses the essential principles of the evaporationprocess by looking at it at the molecular and atomic level. In the first part methods of statistical physics, physical kinetics andnumerical modeling are outlined including the Maxwell’s distributionfunction, the Boltzmann kinetic equation, the Vlasov approach, and theCUDA technique. The distribution functions of evaporating particles are then defined.Experimental results on the evaporation coefficient and the temperaturejump on the evaporation surface are critically reviewed and compared tothe theory and numerical results presented in previous chapters. The book ends with a chapter devoted to evaporation in differentprocesses, such as boiling and cavitation.This monograph addressesgraduate students and researchers working on phase transitions andrelated fields.




Modeling Black Hole Evaporation


Book Description

The scope of this book is two-fold: the first part gives a fully detailed and pedagogical presentation of the Hawking effect and its physical implications, and the second discusses the backreaction problem, especially in connection with exactly solvable semiclassical models that describe analytically the black hole evaporation process.The book aims to establish a link between the general relativistic viewpoint on black hole evaporation and the new CFT-type approaches to the subject. The detailed discussion on backreaction effects is also extremely valuable./a




Evaporation


Book Description

How does a liquid become a gas? Through evaporation! Evaporation helps make puddles disappear after it rains. In this Spanish-translated book, learn all about evaporation and how it happens.




Mass Transfer Driven Evaporation From Capillary Porous Media


Book Description

Mass Transfer–Driven Evaporation from Capillary Porous Media offers a comprehensive review of mass transfer–driven drying processes in capillary porous media, including pore-scale and macro-scale experiments and models. It covers kinetics of drying of a single pore, pore-scale experiments and models, macro-scale experiments and models, and understanding of the continuum model from pore-scale studies. The book: Explains the detailed transport processes in porous media during drying. Introduces cutting-edge visualization experiments of drying in porous media. Describes the pore network models of drying in porous media. Discusses the continuum models of drying in porous media based on pore-scale studies. Points out future research opportunities. Aimed at researchers, students and practicing engineers, this work provides vital fundamental and applied information to those working in drying technology, food processes, applied energy, and mechanical and chemical engineering.