Evolution and Geological Significance of Larger Benthic Foraminifera, Second Edition


Book Description

Evolution and Geological Significance of Larger Benthic Foraminifera is a unique, comprehensive reference work on the larger benthic foraminifera. This second edition is substantially revised, including extensive re-analysis of the most recent work on Cenozoic forms. It provides documentation of the biostratigraphic ranges and palaeoecological significance of the larger foraminifera, which is essential for understanding many major oil-bearing sedimentary basins. In addition, it offers a palaeogeographic interpretation of the shallow marine late Palaeozoic to Cenozoic world. Marcelle K. BouDagher-Fadel collects and significantly adds to the information already published on the larger benthic foraminifera. New research in the Far East, the Middle East, South Africa, Tibet and Americas has provided fresh insights into the evolution and palaeographic significance of these vital reef-forming forms. With the aid of new and precise biostratigraphic dating, she presents revised phylogenies and ranges of the larger foraminifera. The book is illustrated throughout, with examples of different families and groups at the generic levels. Key species are discussed and their biostratigraphic ranges are depicted in comparative charts, which can be found at http://discovery.ucl.ac.uk/10047587/2/Charts.pdf.







Biostratigraphic and Geological Significance of Planktonic Foraminifera


Book Description

The role of fossil planktonic foraminifera as markers for biostratigraphical zonation and correlation underpins most drilling of marine sedimentary sequences and is key to hydrocarbon exploration. The first - and only - book to synthesise the whole biostratigraphic and geological usefulness of planktonic foraminifera, Biostratigraphic and Geological Significance of Planktonic Foraminifera unifies existing biostratigraphic schemes and provides an improved correlation reflecting regional biogeographies.Renowned micropaleontologist Marcelle K. Boudagher-Fadel presents a comprehensive analysis of existing data on fossil planktonic foraminifera genera and their phylogenetic evolution in time and space. This important text, now in its Second Edition, is in considerable demand and is now being republished by UCL Press.




Evolution and Geological Significance of Larger Benthic Foraminifera, Second Edition


Book Description

Evolution and Geological Significance of Larger Benthic Foraminifera is a unique, comprehensive reference work on the larger benthic foraminifera. This second edition is substantially revised, including extensive re-analysis of the most recent work on Cenozoic forms. It provides documentation of the biostratigraphic ranges and palaeoecological significance of the larger foraminifera, which is essential for understanding many major oil-bearing sedimentary basins. In addition, it offers a palaeogeographic interpretation of the shallow marine late Palaeozoic to Cenozoic world. Marcelle K. BouDagher-Fadel collects and significantly adds to the information already published on the larger benthic foraminifera. New research in the Far East, the Middle East, South Africa, Tibet and Americas has provided fresh insights into the evolution and palaeographic significance of these vital reef-forming forms. With the aid of new and precise biostratigraphic dating, she presents revised phylogenies and ranges of the larger foraminifera. The book is illustrated throughout, with examples of different families and groups at the generic levels. Key species are discussed and their biostratigraphic ranges are depicted in comparative charts, which can be found at http://discovery.ucl.ac.uk/10047587/2/Charts.pdf.




Evolution and Geological Significance of Larger Benthic Foraminifera


Book Description

Evolution and Geological Significance of Larger Benthic Foraminifera is a unique, comprehensive reference work on the larger benthic foraminifera. This second edition is substantially revised, including extensive re-analysis of the most recent work on Cenozoic forms. It provides documentation of the biostratigraphic ranges and paleoecological significance of the larger foraminifera, which is essential for understanding many major oil-bearing sedimentary basins. In addition, it offers a palaeogeographic interpretation of the shallow marine late Paleozoic to Cenozoic world. Marcelle K. BouDagher-Fadel collects and significantly adds to the information already published on the larger benthic foraminifera. New research in the Far East, the Middle East, South Africa, Tibet and the Americas has provided fresh insights into the evolution and palaeographic significance of these vital reef-forming forms. With the aid of new and precise biostratigraphic dating, she presents revised phylogenies and ranges of the larger foraminifera. The book is illustrated throughout, with examples of different families and groups at the generic levels. Key species are discussed and their biostratigraphic ranges are depicted in comparative charts, which can be found at This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.




Atlas of Benthic Foraminifera


Book Description

An up-to-date atlas of an important fossil and living group, with the Natural History Museum. Deep-sea benthic foraminifera have played a central role in biostratigraphic, paleoecological, and paleoceanographical research for over a century. These single–celled marine protists are important because of their geographic ubiquity, distinction morphologies and rapid evolutionary rates, their abundance and diversity deep–sea sediments, and because of their utility as indicators of environmental conditions both at and below the sediment–water interface. In addition, stable isotopic data obtained from deep–sea benthic foraminiferal tests provide paleoceanographers with environmental information that is proving to be of major significance in studies of global climatic change. This work collects together, for the first time, new morphological descriptions, taxonomic placements, stratigraphic occurrence data, geographical distribution summaries, and palaeoecological information, along with state-of-the-art colour photomicrographs (most taken in reflected light, just as you would see them using light microscopy), of 300 common deep-sea benthic foraminifera species spanning the interval from Jurassic - Recent. This volume is intended as a reference and research resource for post-graduate students in micropalaeontology, geological professionals (stratigraphers, paleontologists, paleoecologists, palaeoceanographers), taxonomists, and evolutionary (paleo)biologists.




Foraminiferal Micropaleontology for Understanding Earth's History


Book Description

Foraminiferal Micropaleontology for Understanding Earth's History incorporates new findings on taxonomy, classification and biostratigraphy of foraminifera. Foraminifera offer the best geochemical proxies for paleoclimate and paleoenvironment interpretation. The study of foraminifera was promoted by oil exploration due to its exceptional use in subsurface stratigraphy. A rapid technological development in the past 20 years in the field of imaging microfossils and in geochemical microanalysis have added novel information about foraminifera. Foraminiferal Micropaleontology for Understanding Earth's History builds an understanding of biology, morphology and classification of foraminifera for its varied applications. In the past two decades, a phenomenal growth has occurred in geochemical proxies in shells of foraminifera, and as a result, crucial information about past climate of the earth is achieved. Foraminifera is the most extensively used marine microfossils in deep-time reconstruction of the earth history. Its key applications are in paleoenvironment and paleoclimate interpretation, paleoceanography, and biostratigraphy to continuously improve the Geologic Time Scale. - Provides an overview of the Earth history as witnessed and evidenced by foraminifera - Discusses a variety of geochemical proxies used in reconstruction of environment, climate and paleobiology of foraminifera - Presents a new insight into the morphology and classification of foraminifera by modern tools of x-ray microscopy, quantitative methods, and molecular research




Ecology and Palaeoecology of Benthic Foraminifera


Book Description

This is an important and authoritative review of foraminiferal ecology, the first for over a decade. Professor Murray relates ecological data on living forms of foraminifera to the palaeoecology of fossil species, and defines in detail areas of global distribution.




Modern Foraminifera


Book Description

From the reviews: "This is now the definitive, authoritative text on applied foraminiferal micropaleontology and should be in the library of all practicing micropaleontologists." (William A. Berggren, Woods Hole Oceanographic Institution in Micropaleontology, 47:1 (2001)"During the last 20 years there has been an explosion of publications about foraminifera from an amazing variety of disciplines: basic cell biology, algal symbiosis, biomineralization, biogeography, ecology, pollution, chemical oceanography, geochemistry, paleoceanography, and geology. This book summarizes contributions by leading researchers in these diverse fields. It is not just another text on the biology of foraminifera. Rather, Barun Sen Gupta has accomplished his objective to "write an advanced text for university students that would also serve as a reference book for professionals"." (Howard J. Spero, University of California at Davis in Limnology and Oceanography, 45:8 (2000).




The Vegetation of Antarctica through Geological Time


Book Description

The fossil history of plant life in Antarctica is central to our understanding of the evolution of vegetation through geological time and also plays a key role in reconstructing past configurations of the continents and associated climatic conditions. This book provides the only detailed overview of the development of Antarctic vegetation from the Devonian period to the present day, presenting Earth scientists with valuable insights into the break up of the ancient supercontinent of Gondwana. Details of specific floras and ecosystems are provided within the context of changing geological, geographical and environmental conditions, alongside comparisons with contemporaneous and modern ecosystems. The authors demonstrate how palaeobotany contributes to our understanding of the paleoenvironmental changes in the southern hemisphere during this period of Earth history. The book is a complete and up-to-date reference for researchers and students in Antarctic paleobotany and terrestrial paleoecology.