Evolution of Insect Migration and Diapause


Book Description

This volume is an outgrowth of a Symposium entitled "Evolution of Escape in Space and Time" held at the XV International Congress of Entomology in Washington, D. C., USA in August, 1976. The choice of topic was prompted by recent advances in evolutionary ecology and the apparent suitability of insect migration and dia pause as appropriate material for evolutionary studies. In the event, that choice seems amply justified as I hope a perusal of these papers will show. These Sympos ium papers hardly cover the topic of the evolution of escape mechanisms exhaustively, and I am sure everyone will have his favorite lacuna. Some of the more obvious ones are indicated by Professor Southwood in his Concluding Remarks at the end of the book. The purpose of the Symposium, however, was not complete coverage, but rather to indicate the potential inherent in insect migration and diapause for the study of evolutionary problems. In that I think we have succeeded reasonably well. These papers are expanded and in some cases somewhat altered versions of the papers delivered in Washington. This has allowed greater coverage of the topics in question. I suggested a format of a general overview of a topic emphasizing the author's own research con tributions. In general the papers follow this outline although emphases vary. Two of the authors, Dr. Rainey and Dr. Lumme, were unable to attend the Symposium. Dr. Rainey's paper was read by Mr. Frank Walsh, but Dr.




Insect Diapause


Book Description

Our highly seasonal world restricts insect activity to brief portions of the year. This feature necessitates a sophisticated interpretation of seasonal changes and enactment of mechanisms for bringing development to a halt and then reinitiating it when the inimical season is past. The dormant state of diapause serves to bridge the unfavourable seasons, and its timing provides a powerful mechanism for synchronizing insect development. This book explores how seasonal signals are monitored and used by insects to enact specific molecular pathways that generate the diapause phenotype. The broad perspective offered here scales from the ecological to the molecular and thus provides a comprehensive view of this exciting and vibrant research field, offering insights on topics ranging from pest management, evolution, speciation, climate change and disease transmission, to human health, as well as analogies with other forms of invertebrate dormancy and mammalian hibernation.




Seasonal Adaptations of Insects


Book Description

This balanced comprehensive account traces the alterations in body form undergone by insects as they adapt to seasonal change, exploring both theoretical aspects and practical issues. Topics explored include natural history, genetics, evolution, and management of insect adaptations.




Insect Timing


Book Description

Now that many of the clock genes have been identified it is possible to track daily patterns of clock-related mRNAs and proteins to link the entraining light cycles with molecular oscillations within the cell. Insect experiments have led the way in demonstrating that the concept of a "master clock" can no longer be used to explain the temporal organization within an animal. Insects have a multitude of cellular clocks that can function independently and retain their function under organ culture conditions, and they thus offer a premier system for studying how the hierarchical organization of clocks results in the overall temporal organization of the animal. Photoperiodism, and its most obvious manifestation, diapause, does not yet have the molecular underpinning that has been established for circadian rhythms, but recent studies are beginning to identify genes that appear to be involved in the regulation of diapause.




Insect life-cycle polymorphism


Book Description

Recent studies have shown that genetic polymorphisms play an important role in structuring the seasonal life cycles of insects, complementing an earlier emphasis on the effects of environmental factors. This book presents current ideas and recent research on insect life--cycle polymorphism in a series of carefully prepared chapters by international experts, covering the full breadth of the subject in order to give an up-to-date view of how life cycles are controlled and how they evolve. By consolidating our view of insect life--cycle polymorphism in this way, the book provides a staging point for further enquiries. The volume will be of interest to a wide variety of entomologists and other biologists interested in the control and evolution of life cycles and in understanding the extraordinarily complex ecological strategies of insects and other organisms.




Insect Flight


Book Description




The Evolution of Insect Life Cycles


Book Description

This book was developed out of a symposium at the XVII International Congress of Entomology held in Hamburg, Germany, on August 21, 1984. This symposium was organized by Drs. William Bradshaw and Hugh Dingle, who subsequently asked us to edit the proceedings. The chapters represent, for the most part, papers that were read in Hamburg but have been expanded and updated. The goal of this volume is to provide a comprehensive view of current research on insect life cycles, including field and laboratory studies, broad comparisons among species or local populations, and intensive studies of single populations, as well as theoretical research. Of necessity, given the magnitude of research now being carried out on insects, some important research programs are not included, and therein lie the makings of future volumes. This volume is divided into three parts. The first part, Geographical Patterns in Insect Life Cycles, explores various applications of a comparative method that has been valuable in investigating the potential for variability in life history parameters and the relation of these parameters to important variables in the environment.




Evolution and Adaptation of Terrestrial Arthropods


Book Description

This book is intended as a textbook for 3rd year undergraduate students, as well as postgraduate students. It comprises a review of the current opinion regarding the evolution and adaptation of terrestrial arthropods, beginning with the paleontological, embryological, morphological and physiological evidence. The implication of size is then considered in relation to life on land. A discussion of insect phylogeny and the origin of flight is followed by an account of evolutionary trends in reproduction. Further chapters cover adaptations to extreme environments, dispersal and migration, defensive mechanisms and, finally, present arguments for the success of the terrestrial arthropods in general.




Radar Entomology


Book Description

Many of the world's most serious agricultural pests are highly migratory. Through the use of special-purpose radars we are provided with insights into their movement and how they learn about and navigate through their environment. This text examines the behaviour and regional variations of these species, as well as the altitude of migration, concentration of insects in layers and how they respond to large and small-scale wind systems. The book relates radar observation of insect movement to complementary and competing methodologies and surveys its capabilities and limitations. It also deals wi




Insects at Low Temperature


Book Description

The study of insects at low temperature is a comparatively new field. Only recently has insect cryobiology begun to mature, as research moves from a descriptive approach to a search for underlying mechanisms at diverse levels of organization ranging from the gene and cell to ecological and evolutionary relationships. Knowledge of insect responses to low temperature is crucial for understanding the biology of insects living in seasonally varying habitats as well as in polar regions. It is not possible to precisely define low temperature. In the tropics exposure to 10-15°C may induce chill coma or death, whereas some insects in temperate and polar regions remain active and indeed even able to fly at O°C or below. In contrast, for persons interested in cryopreservation, low temperature may mean storage in liquid nitrogen at - 196°C. In the last decade, interest in adaptations of invertebrates to low temperature has risen steadily. In part, this book had its origins in a symposium on this subject that was held at the annual meeting of the Entomological Society of America in Louisville, Kentucky, USA in December, 1988. However, the emergence and growth of this area has also been strongly influenced by an informal group of investigators who met in a series of symposia held in Oslo, Norway in 1982, in Victoria, British Columbia, Canada in 1985 and in Cambridge, England in 1988. Another is scheduled for Binghamton, New York, USA (1990).