Evolution of Protoplanetary Disks in the Orion A Star-forming Region


Book Description

"In this dissertation we investigate the characteristics of Class II protoplanetary disks in Orion A star-forming region. Our major goal is to analyze a large sample of protoplanetary disks with near- and mid-IR spectra, by statistical approaches, to understand protoplanetary disk evolution in Orion A. The topics with which we deal include the following: (1) Environmental and age effects on the evolution of protoplanetary disks; (2) Giant planet formation in the transitional disks of Orion A: a statistical study of correlations among disk and stellar properties; (3) The impact of extreme UV radiation on the protoplanetary disks near the Trapezium. For this work, 303 protoplanetary disks in Orion A region observed by IRS/Spitzer and the follow-up observation of 120 objects from SpeX/IRTF are used to reveal the characteristics of Class II disks in Orion A. For clues on environmental effects on disk evolution and planet formation, we compare the disk properties and dust properties of Orion A disks to that of Taurus disks and examine trends with respect to position within Orion A. We extract spectral indices, equivalent widths, and integrated fluxes from IRS spectra of Class II objects in Orion A which pertain to disk structure and dust composition. We measure mass accretion rates using hydrogen recombination lines in SpeX spectra of our targets. Utilizing the properties, we analyze the general distribution of properties of disks in ONC, L1641, and Taurus from their histograms. Our main findings are as follows: Transitional disks - those protoplanetary disks for which deficits of infrared excess signify sharp-edged gaps in the dust distribution - are produced gravitationally by companions to the central star. The vast majority of the companions (




The Formation and Early Evolution of Stars


Book Description

Starburst regions in nearby and distant galaxies have a profound impact on our understanding of the early universe. This new, substantially updated and extended edition of Norbert Schulz’s unique book "From Dust to Stars" describes complex physical processes involved in the creation and early evolution of stars. It illustrates how these processes reveal themselves from radio wavelengths to high energy X-rays and gamma–rays, with special reference towards high energy signatures. Several sections devoted to key analysis techniques demonstrate how modern research in this field is pursued and new chapters are introduced on massive star formation, proto-planetary disks and observations of young exoplanets. Recent advances and contemporary research on the theory of star formation are explained, as are new observations, specifically from the three great observatories of the Spitzer Space Telescope, the Hubble Space Telescope and the Chandra X-Ray Observatory which all now operate at the same time and make high resolution space based observing in its prime. As indicated by the new title two new chapters have been included on proto-planetary disks and young exoplanets. Many more colour images illustrate attractive old and new topics that have evolved in recent years. The author gives updates in theory, fragmentation, dust, and circumstellar disks and emphasizes and strengthens the targeting of graduate students and young researchers, focusing more on computational approaches in this edition.




From Dust To Stars


Book Description

Studies of stellar formation in galaxies have a profound impact on our understanding of the present and the early universe. The book describes complex physical processes involved in the creation of stars and during their young lives. It illustrates how these processes reveal themselves from radio wavelengths to high energy X-rays and gamma -rays, with special reference towards high energy signatures. Several sections devoted to key analysis techniques demonstrate how modern research in this field is pursued.




Protostars and Planets IV


Book Description

Click here for the online version of this book! This title, out of print in 2008, is now available free of charge, in it's entirety, online through the University of Arizona Press! Both a textbook and a status report for every facet of research into the formation of stars and planets, Protostars and Planets IV brings together 167 authors who report on the most significant advances in the field since the publication of the previous volume in 1993. Protostars and Planets IV reflects improvements in observational techniques and the availability of new facilities such as the Infrared Space Observatory, the refurbished Hubble Space Telescope, and the 10-m Keck telescopes. Advances in computer technology and modeling methods have benefited theoretical studies of molecular clouds, star formation, and jets and disks, while recent analyses of meteorites yield important insights into conditions and processes within our Sun's early protoplanetary disk. The 49 chapters describe context and progress for observational and theoretical studies of the structure, chemistry, and dynamics of molecular clouds; the collapse of cores and the formation of protostars; the formation and properties of young binary stars; the properties of winds, jets, and molecular outflows from young stellar objects; the evolution of circumstellar envelopes and disks; grain growth in disks and the formation of planets; and the properties of the early Solar nebula. Protostars and Planets IV is also the first book to include chapters describing the discoveries of extrasolar planets, brown dwarfs, and Edgeworth-Kuiper Belt objects, and the first to include high-resolution optical and near-infrared images of protoplanetary disks. Protostars and Planets IV is an unsurpassed reference not only for established researchers but also for younger scientists whose imagination and work will lead to tomorrow's discoveries.




The Evolutionary State of Young Protoplanetary Disks


Book Description

"Observations of protoplanetary disks have been focused on low-mass, classical T-Tauri stars and on intermediate mass Herbig Ae/Be stars. The observations of the Herbig stars have introduced a bias in the intermediate mass range since they exclude the earlier stages of disk evolution. The heaviest T-Tauri stars, the intermediate mass T-Tauri stars (IMTT stars), with spectral type from F to early K and with masses ≥1.5 M☉, are the younger precursors of the Herbig stars. To get a complete picture of the evolution of protoplanetary disks IMTT stars needs to be studied. Many IMTT stars have already been included in samples of classical T-Tauri stars where they are the most massive stars in the samples. This thesis seeks to remove some of this bias by focusing on the IMTT stars and observations of the disks around them. This thesis presents the research of a sample of 49 identified IMTT stars with infrared access. Their disks are compared with those of the known Herbig Ae/Be stars to examine their evolutionary status. The thesis also presents spatially resolved near-infrared scattered light observations of the IMTT star RY Tau. Using radiative transfer modelling the observations are recreated and features reminiscent of a dusty disk wind is assessed. Finally, it presents near-infrared spatially resolved scattered light observations of 23 optically bright stars in the Orion high mass star forming region. The observations are analysed in context of the stellar parameters, stellar multiplicity and the environment of a high star forming region."--




High Angular Resolution Studies of the Structure and Evolution of Protoplanetary Disks


Book Description

Young stars are surrounded by massive, rotating disks of dust and gas, which supply a reservoir of material that may be incorporated into planets or accreted onto the central star. In this dissertation, I use high angular resolution observations at a range of wavelengths to understand the structure, ubiquity, and evolutionary timescales of protoplanetary disks. First, I describe a study of Class I protostars, objects believed to be at an evolutionary stage between collapsing spherical clouds and fully-assembled young stars surrounded by protoplanetary disks. I use a Monte Carlo radiative transfer code to model new 0.9 micron scattered light images, 1.3 mm continuum images, and broadband spectral energy distributions. This modeling shows that Class I sources are probably surrounded by massive protoplanetary disks embedded in massive infalling envelopes. For the best-fitting models of the circumstellar dust distributions, I determine several important properties, including envelope and disk masses, mass infall rates, and system inclinations, and I use these results to constrain the evolutionary stage of these objects. Second, I discuss observations of the innermost regions of more evolved disks around T Tauri and Herbig Ae/Be stars, obtained with the Palomar Testbed and Keck Interferometers. I constrain the spatial and temperature structure of the circumstellar material at sub-AU radii, and demonstrate that lower-mass stars are surrounded by inclined disks with puffed-up inner edges 0.1-1 AU from the star. In contrast, the truncated inner disks around more massive stars may not puff-up, indicating that disk structure depends on stellar properties. I discuss the implications of these results for disk accretion, terrestrial planet formation and giant planet migration. Finally, I put these detailed studies of disk structure into a broader context by constraining the mass distribution and evolutionary timescales of circumstellar disks. Using the Owens Valley Millimeter Array, I mapped the millimeter continuum emission toward >300 low-mass stars in the NGC 2024 and Orion Nebula clusters. These observations demonstrate that the average disk mass in each cluster is comparable to the "minimum-mass protosolar nebula," and that there may be disk evolution on one million year timescales.




Protostars and Planets V


Book Description

'Protostars and Planets V' builds on the latest results from recent advances in ground and space-based astronomy and in numerical computing techniques to offer the most detailed and up-to-date picture of star and planet formation - including the formation and early evolution of our own solar system.




The Origin of Stars and Planetary Systems


Book Description

A few years after the publication of The Physics of Star Formation and Early Stellar Evolution, we received a request from the publisher for an up dated second edition of this popular reference book. As originally intended, the volume had proved to be a useful "text" book for graduate astronomy courses and seminars which dealt with topics related to stellar origins. The book was based on a series of lectures delivered by a distinguished group of leading researchers at a NATO Advanced Study Institute (ASI) held in May 1990 on the island of Crete, Greece. The primary goal of the ASI was in fact to produce a book which "would simultaneously provide a broad and systematic overview of, as well as a rigorous introduction to, the fun damental physics and astronomy at the heart of modern research in star formation and early stellar evolution. " However, by 1995 concern had arisen among those who used the text as a reference for graduate seminars and courses that the book would need to be updated to stay abreast of the discoveries and progress in this rapidly evolving field. After some discussion we concluded that a new edition of the book was warranted and that the goal of producing a new edition would be best accomplished by organizing a second ASI in Crete to review the progress in star formation research.




The Physics of Star Formation and Early Stellar Evolution


Book Description

The origin of stars is one of the principle mysteries of nature. During the last two decades advances in technology have enabled more progress to be made in the quest to understand stellar origins than at any other time in history. The study of star formation has developed into one of the most important branches of mod ern astrophysical research. A large body of observational data and a considerable literat ure now exist concerning this topic and a 1arge community of international astronomers and physicists devote their efforts attempting to decipher the secrets of stellar birth. Yet, the young astronomerjphysicist or more advanced researcher desiring to obtain a basic background in this area of research must sift through a very diverse and sometimes bewildering literature. A literature which includes research in many discip1ines and sub discip1ines of classical astrophysics from stel lar structure to the interstellar medium and encompasses the entire range of the electromagnetic spectrum from radio to gamma rays. Often, the reward of a suc cessfu1 foray through the current literature is the realization that the results can be obsolete and outdated as soon as the ink is dry in the journal or the conference proceeding in which they are published.




From Protoplanetary Disks to Planet Formation


Book Description

Is the Sun and its planetary system special? How did the Solar system form? Are there similar systems in the Galaxy? How common are habitable planets? What processes take place in the early life of stars and in their surrounding circumstellar disks that could impact whether life emerges or not? This book is based on the lectures by Philip Armitage and Wilhelm Kley presented at 45th Saas-Fee Advanced Course „From Protoplanetary Disks to Planet Formation“ of the Swiss Society for Astrophysics and Astronomy. The first part deals with the physical processes occurring in proto-planetary disks starting with the observational context, structure and evolution of the proto-planetary disk, turbulence and accretion, particle evolution and structure formation. The second part covers planet formation and disk-planet interactions. This includes in detail dust and planetesimal formation, growth to protoplanets, terrestrial planet formation, giant planet formation, migration of planets, multi-planet systems and circumbinary planets. As Saas-Fee advanced course this book offers PhD students an in-depth treatment of the topic enabling them to enter on a research project in the field.