Evolutionary Algorithms in Molecular Design


Book Description

When trying to find new methods and problem-solving strategies for their research, scientists often turn to nature for inspiration. An excellent example of this is the application of Darwin's Theory of Evolution, particularly the notion of the 'survival of the fittest', in computer programs designed to search for optimal solutions to many kinds of problems. These 'evolutionary algorithms' start from a population of possible solutions to a given problem and, by applying evolutionary principles, evolve successive generations with improved characteristics until an optimal, or near-optimal, solution is obtained. This book highlights the versatility of evolutionary algorithms in areas of relevance to molecular design with a particular focus on drug design. The authors, all of whom are experts in their field, discuss the application of these computational methods to a wide range of research problems including conformational analysis, chemometrics and quantitative structure-activity relationships, de novo molecular design, chemical structure handling, combinatorial library design, and the study of protein folding. In addition, the use of evolutionary algorithms in the determination of structures by X-ray crystallography and NMR spectroscopy is also covered. These state-of-the-art reviews, together with a discussion of new techniques and future developments in the field, make this book a truly valuable and highly up-to-date resource for anyone engaged in the application or development of computer-assisted methods in scientific research.




Genetic Algorithms in Molecular Modeling


Book Description

Genetic Algorithms in Molecular Modeling is the first book available on the use of genetic algorithms in molecular design. This volume marks the beginning of an ew series of books, Principles in Qsar and Drug Design, which will be an indispensible reference for students and professionals involved in medicinal chemistry, pharmacology, (eco)toxicology, and agrochemistry. Each comprehensive chapter is written by a distinguished researcher in the field. Through its up to the minute content, extensive bibliography, and essential information on software availability, this book leads the reader from the theoretical aspects to the practical applications. It enables the uninitiated reader to apply genetic algorithms for modeling the biological activities and properties of chemicals, and provides the trained scientist with the most up to date information on the topic. - Extremely topical and timely - Sets the foundations for the development of computer-aided tools for solving numerous problems in QSAR and drug design - Written to be accessible without prior direct experience in genetic algorithms




De novo Molecular Design


Book Description

Systematically examining current methods and strategies, this ready reference covers a wide range of molecular structures, from organic-chemical drugs to peptides, Proteins and nucleic acids, in line with emerging new drug classes derived from biomacromolecules. A leader in the field and one of the pioneers of this young discipline has assembled here the most prominent experts from across the world to provide first-hand knowledge. While most of their methods and examples come from the area of pharmaceutical discovery and development, the approaches are equally applicable for chemical probes and diagnostics, pesticides, and any other molecule designed to interact with a biological system. Numerous images and screenshots illustrate the many examples and method descriptions. With its broad and balanced coverage, this will be the firststop resource not only for medicinal chemists, biochemists and biotechnologists, but equally for bioinformaticians and molecular designers for many years to come. From the content: * Reaction-driven de novo design * Adaptive methods in molecular design * Design of ligands against multitarget profiles * Free energy methods in ligand design * Fragment-based de novo design * Automated design of focused and target family-oriented compound libraries * Molecular de novo design by nature-inspired computing * 3D QSAR approaches to de novo drug design * Bioisosteres in de novo design * De novo design of peptides, proteins and nucleic acid structures, including RNA aptamers and many more.




Applications of Evolutionary Computation


Book Description

This book constitutes the refereed proceedings of the 24th International Conference on Applications of Evolutionary Computation, EvoApplications 2021, held as part of Evo*2021, as Virtual Event, in April 2021, co-located with the Evo*2021 events EuroGP, EvoCOP, and EvoMUSART. The 51 revised full papers presented in this book were carefully reviewed and selected from 78 submissions. The papers cover a wide spectrum of topics, ranging from applications of evolutionary computation; applications of deep bioinspired algorithms; soft computing applied to games; machine learning and AI in digital healthcare and personalized medicine; evolutionary computation in image analysis, signal processing and pattern recognition; evolutionary machine learning; parallel and distributed systems; and applications of nature inspired computing for sustainability and development.​




Computer Aided Molecular Design


Book Description

CAMD or Computer Aided Molecular Design refers to the design of molecules with desirable properties. That is, through CAMD, one determines molecules that match a specified set of (target) properties. CAMD as a technique has a very large potential as in principle, all kinds of chemical, bio-chemical and material products can be designed through this technique.This book mainly deals with macroscopic properties and therefore does not cover molecular design of large, complex chemicals such as drugs. While books have been written on computer aided molecular design relating to drugs and large complex chemicals, a book on systematic formulation of CAMD problems and solutions, with emphasis on theory and practice, which helps one to learn, understand and apply the technique is currently unavailable.·This title brings together the theoretical aspects related to Computer Aided Molecular Design, the different techniques that have been developed and the different applications that have been reported. ·Contributing authors are among the leading researchers and users of CAMD·First book available giving a systematic formulation of CAMD problems and solutions




Applications of Evolutionary Computation in Chemistry


Book Description

H. M. Cartwright: An Introduction to Evolutionary Computation andEvolutionary Algorithms; B. Hartke: Application of Evolutionary Algorithms to Global Cluster Geometry Optimization; K.D.M. Harris, R.L. Johnston, S. Habershon: Application of Evolutionary Computation in Structure Solution from Diffraction Data; S. M.




Adaptive Systems in Drug Design


Book Description

A brief history of drug design presented to make clear that there are fashions in this important field and that they change rather rapidly. This is due in part to the fact that the way that a new paradigm is accepted in a drug company often does not depend on its scientific merit alone.




Swarm Intelligence and Evolutionary Algorithms in Healthcare and Drug Development


Book Description

Healthcare sector is characterized by difficulty, dynamism and variety. In 21st century, healthcare domain is surrounded by tons of challenges in terms of Disease detection, prevention, high costs, skilled technicians and better infrastructure. In order to handle these challenges, Intelligent Healthcare management technologies are required to play an effective role in improvising patient’s life. Healthcare organizations also need to continuously discover useful and actionable knowledge to gain insight from tons of data for various purposes for saving lives, reducing medical operations errors, enhancing efficiency, reducing costs and making the whole world a healthy world. Applying Swarm Intelligence and Evolutionary Algorithms in Healthcare and Drug Development is essential nowadays. The objective of this book is to highlight various Swarm Intelligence and Evolutionary Algorithms techniques for various medical issues in terms of Cancer Diagnosis, Brain Tumor, Diabetic Retinopathy, Heart disease as well as drug design and development. The book will act as one-stop reference for readers to think and explore Swarm Intelligence and Evolutionary Algorithms seriously for real-time patient diagnosis, as the book provides solutions to various complex diseases found critical for medical practitioners to diagnose in real-world. Key Features: Highlights the importance and applications of Swarm Intelligence and Evolutionary Algorithms in Healthcare industry. Elaborates Swarm Intelligence and Evolutionary Algorithms for Cancer Detection. In-depth coverage of computational methodologies, approaches and techniques based on Swarm Intelligence and Evolutionary Algorithms for detecting Brain Tumour including deep learning to optimize brain tumor diagnosis. Provides a strong foundation for Diabetic Retinopathy detection using Swarm and Evolutionary algorithms. Focuses on applying Swarm Intelligence and Evolutionary Algorithms for Heart Disease detection and diagnosis. Comprehensively covers the role of Swarm Intelligence and Evolutionary Algorithms for Drug Design and Discovery. The book will play a significant role for Researchers, Medical Practitioners, Healthcare Professionals and Industrial Healthcare Research and Development wings to conduct advanced research in Healthcare using Swarm Intelligence and Evolutionary Algorithms techniques.




Soft Computing Approaches in Chemistry


Book Description

The contributions to this book cover a wide range of applications of Soft Computing to the chemical domain. The early roots of Soft Computing can be traced back to Lotfi Zadeh's work on soft data analysis [1] published in 1981. 'Soft Computing' itself became fully established about 10 years later, when the Berkeley Initiative in Soft Computing (SISC), an industrial liaison program, was put in place at the University of California - Berkeley. Soft Computing applications are characterized by their ability to: • approximate many different kinds of real-world systems; • tolerate imprecision, partial truth, and uncertainty; and • learn from their environment. Such characteristics commonly lead to a better ability to match reality than other approaches can provide, generating solutions of low cost, high robustness, and tractability. Zadeh has argued that soft computing provides a solid foundation for the conception, design, and application of intelligent systems employing its methodologies symbiotically rather than in isolation. There exists an implicit commitment to take advantage of the fusion of the various methodologies, since such a fusion can lead to combinations that may provide performance well beyond that offered by any single technique.




Genetic and Evolutionary Computation — GECCO 2004


Book Description

The two volume set LNCS 3102/3103 constitutes the refereed proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2004, held in Seattle, WA, USA, in June 2004. The 230 revised full papers and 104 poster papers presented were carefully reviewed and selected from 460 submissions. The papers are organized in topical sections on artificial life, adaptive behavior, agents, and ant colony optimization; artificial immune systems, biological applications; coevolution; evolutionary robotics; evolution strategies and evolutionary programming; evolvable hardware; genetic algorithms; genetic programming; learning classifier systems; real world applications; and search-based software engineering.