Evolutionary Dynamics of Plant–Pathogen Interactions


Book Description

A broad view of plant-pathogen interactions illustrating the fundamental reciprocal role pathogens and hosts play in shaping each other's ecology and evolution.




Eco-evolutionary Dynamics


Book Description

In recent years, scientists have realized that evolution can occur on timescales much shorter than the 'long lapse of ages' emphasized by Darwin - in fact, evolutionary change is occurring all around us all the time. This work provides an authoritative and accessible introduction to eco-evolutionary dynamics, a cutting-edge new field that seeks to unify evolution and ecology into a common conceptual framework focusing on rapid and dynamic environmental and evolutionary change.




Evolutionary Ecology Of Plants


Book Description

Traditionally, plant ecology has focused on the description of plant communiti- es, on nutrient dynamics within these communities, and on environmental factors affecting the ecology of individuals. In recent years, the need for a more sophisticated look at the interactions within and between species and populations has emerged along with renewed appreciation for the importance of genetic and evolutionary plant ecology. The papers, representing current major research areas, cover plant life histories, evolutionary dynamics, plant breeding systems, evolution and organisation of communities, plant animal interactions, and the interfaces between plants, agriculture and conservation.




Eco-Evolutionary Dynamics


Book Description

The theme of this volume is to discuss Eco-evolutionary Dynamics. Updates and informs the reader on the latest research findings Written by leading experts in the field Highlights areas for future investigation




Plant Genome Diversity Volume 2


Book Description

This second of two volumes on Plant Genome Diversity provides, in 20 chapters, insights into the structural evolution of plant genomes with all its variations. Starting with an outline of plant phylogeny and its reconstruction, the second part of the volume describes the architecture and dynamics of the plant cell nucleus, the third examines the evolution and diversity of the karyotype in various lineages, including angiosperms, gymnosperms and monilophytes. The fourth part presents the mechanisms of polyploidization and its biological consequences and significance for land plant evolution. The fifth part deals with genome size evolution and its biological significance. Together with Volume I, this comprehensive book on the plant genome is intended for students and professionals in all fields of plant science, offering as it does a convenient entry into a burgeoning literature in a fast-moving field.




Ecological and Evolutionary Dynamics of Plant-soil Feedbacks


Book Description

Plants interact with, modify, and are affected by their soil environments. Though plant-soil interactions are well known to be important and active regulators of ecosystem function and community structure, much less is known about how these interactions affect plant evolution. The primary goal of my dissertation was to examine plant-soil interactions under a range of ecological and evolutionary contexts to better understand patterns of biodiversity, ecosystem function, and whole system responses to environmental change. Taking such an eco-evolutionary perspective allows for a holistic understanding of the causes and consequences of complex abiotic and biotic interactions that link ecosystem ecology and evolution. In my first chapter, I reviewed what is known about genetic interactions between plants, soils, and soil communities, and in doing so, identified a new mechanism for how genetically based plant-soil feedbacks might emerge at large scales. In my second chapter, I used field observations and multiple experimental approaches to test whether soil N acts as a selective gradient on plant phenotypes, if soil microbial communities mediate the selective pressure, and whether plant genetic variation impacts soil N pools. In my third chapter, I developed climate and soil ecological niche models, combined with a new double quantile regression approach, to tests how traits are adapted or plastic at critical environmental limits. Finally, my fourth chapter examined how plant-soil interactions and feedbacks at landscape scales may influence range dynamics and associated ecosystem processes as species move upwards towards higher elevations with rising temperatures. Overall, my dissertation sought to bring an evolutionary perspective to ecosystem ecology research by investigating the genetic mechanisms and outcomes of plant-soil interactions.




Mycorrhizal Symbiosis


Book Description

The roots of most plants are colonized by symbiotic fungi to form mycorrhiza, which play a critical role in the capture of nutrients from the soil and therefore in plant nutrition. Mycorrhizal Symbiosis is recognized as the definitive work in this area. Since the last edition was published there have been major advances in the field, particularly in the area of molecular biology, and the new edition has been fully revised and updated to incorporate these exciting new developments. Over 50% new material Includes expanded color plate section Covers all aspects of mycorrhiza Presents new taxonomy Discusses the impact of proteomics and genomics on research in this area




Plant Genome Diversity


Book Description

In this timely new 2-volume treatise, experts from around the world have banded together to produce a first-of-its-kind synopsis of the exciting and fast moving field of plant evolutionary genomics. In Volume I of Plant Genome Diversity, an update is provided on what we have learned from plant genome sequencing projects. This is followed by more focused chapters on the various genomic residents of plant genomes, including transposable elements, centromeres, small RNAs, and the evolutionary dynamics of genes and non-coding sequences. Attention is drawn to advances in our understanding of plant mitochondrial and plastid genomes, as well as the significance of duplication in genic evolution and the non-independent evolution among sequences in plant genomes. Finally, Volume I provides an introduction to the vibrant new frontier of plant epigenomics, describing the current state of our knowledge and the evolutionary implications of the epigenomic landscape.




Plant Genome Diversity


Book Description




Plant Genome Diversity Volume 1


Book Description

In this timely new 2-volume treatise, experts from around the world have banded together to produce a first-of-its-kind synopsis of the exciting and fast moving field of plant evolutionary genomics. In Volume I of Plant Genome Diversity, an update is provided on what we have learned from plant genome sequencing projects. This is followed by more focused chapters on the various genomic “residents” of plant genomes, including transposable elements, centromeres, small RNAs, and the evolutionary dynamics of genes and non-coding sequences. Attention is drawn to advances in our understanding of plant mitochondrial and plastid genomes, as well as the significance of duplication in genic evolution and the non-independent evolution among sequences in plant genomes. Finally, Volume I provides an introduction to the vibrant new frontier of plant epigenomics, describing the current state of our knowledge and the evolutionary implications of the epigenomic landscape.