Evolutionary Equations


Book Description

This open access book provides a solution theory for time-dependent partial differential equations, which classically have not been accessible by a unified method. Instead of using sophisticated techniques and methods, the approach is elementary in the sense that only Hilbert space methods and some basic theory of complex analysis are required. Nevertheless, key properties of solutions can be recovered in an elegant manner. Moreover, the strength of this method is demonstrated by a large variety of examples, showing the applicability of the approach of evolutionary equations in various fields. Additionally, a quantitative theory for evolutionary equations is developed. The text is self-contained, providing an excellent source for a first study on evolutionary equations and a decent guide to the available literature on this subject, thus bridging the gap to state-of-the-art mathematical research.




Dynamics of Evolutionary Equations


Book Description

The theory and applications of infinite dimensional dynamical systems have attracted the attention of scientists for quite some time. This book serves as an entrée for scholars beginning their journey into the world of dynamical systems, especially infinite dimensional spaces. The main approach involves the theory of evolutionary equations.




Evolutionary Dynamics


Book Description

At a time of unprecedented expansion in the life sciences, evolution is the one theory that transcends all of biology. Any observation of a living system must ultimately be interpreted in the context of its evolution. Evolutionary change is the consequence of mutation and natural selection, which are two concepts that can be described by mathematical equations. Evolutionary Dynamics is concerned with these equations of life. In this book, Martin A. Nowak draws on the languages of biology and mathematics to outline the mathematical principles according to which life evolves. His work introduces readers to the powerful yet simple laws that govern the evolution of living systems, no matter how complicated they might seem. Evolution has become a mathematical theory, Nowak suggests, and any idea of an evolutionary process or mechanism should be studied in the context of the mathematical equations of evolutionary dynamics. His book presents a range of analytical tools that can be used to this end: fitness landscapes, mutation matrices, genomic sequence space, random drift, quasispecies, replicators, the Prisoner’s Dilemma, games in finite and infinite populations, evolutionary graph theory, games on grids, evolutionary kaleidoscopes, fractals, and spatial chaos. Nowak then shows how evolutionary dynamics applies to critical real-world problems, including the progression of viral diseases such as AIDS, the virulence of infectious agents, the unpredictable mutations that lead to cancer, the evolution of altruism, and even the evolution of human language. His book makes a clear and compelling case for understanding every living system—and everything that arises as a consequence of living systems—in terms of evolutionary dynamics.




Evolutionary Equations with Applications in Natural Sciences


Book Description

With the unifying theme of abstract evolutionary equations, both linear and nonlinear, in a complex environment, the book presents a multidisciplinary blend of topics, spanning the fields of theoretical and applied functional analysis, partial differential equations, probability theory and numerical analysis applied to various models coming from theoretical physics, biology, engineering and complexity theory. Truly unique features of the book are: the first simultaneous presentation of two complementary approaches to fragmentation and coagulation problems, by weak compactness methods and by using semigroup techniques, comprehensive exposition of probabilistic methods of analysis of long term dynamics of dynamical systems, semigroup analysis of biological problems and cutting edge pattern formation theory. The book will appeal to postgraduate students and researchers specializing in applications of mathematics to problems arising in natural sciences and engineering.




Handbook of Differential Equations: Evolutionary Equations


Book Description

The material collected in this volume discusses the present as well as expected future directions of development of the field with particular emphasis on applications. The seven survey articles present different topics in Evolutionary PDE's, written by leading experts.- Review of new results in the area- Continuation of previous volumes in the handbook series covering Evolutionary PDEs- Written by leading experts




Evolution Equations and Approximations


Book Description

Annotation Ito (North Carolina State U.) and Kappel (U. of Graz, Austria) offer a unified presentation of the general approach for well-posedness results using abstract evolution equations, drawing from and modifying the work of K. and Y. Kobayashi and S. Oharu. They also explore abstract approximation results for evolution equations. Their work is not a textbook, but they explain how instructors can use various sections, or combinations of them, as a foundation for a range of courses. Annotation copyrighted by Book News, Inc., Portland, OR




Surface Evolution Equations


Book Description

This book presents a self-contained introduction to the analytic foundation of a level set approach for various surface evolution equations including curvature flow equations. These equations are important in many applications, such as material sciences, image processing and differential geometry. The goal is to introduce a generalized notion of solutions allowing singularities, and to solve the initial-value problem globally-in-time in a generalized sense. Various equivalent definitions of solutions are studied. Several new results on equivalence are also presented. Moreover, structures of level set equations are studied in detail. Further, a rather complete introduction to the theory of viscosity solutions is contained, which is a key tool for the level set approach. Although most of the results in this book are more or less known, they are scattered in several references, sometimes without proofs. This book presents these results in a synthetic way with full proofs. The intended audience are graduate students and researchers in various disciplines who would like to know the applicability and detail of the theory as well as its flavour. No familiarity with differential geometry or the theory of viscosity solutions is required. Only prerequisites are calculus, linear algebra and some basic knowledge about semicontinuous functions.




Dynamical Systems and Evolution Equations


Book Description

This book grew out of a nine-month course first given during 1976-77 in the Division of Engineering Mechanics, University of Texas (Austin), and repeated during 1977-78 in the Department of Engineering Sciences and Applied Mathematics, Northwestern University. Most of the students were in their second year of graduate study, and all were familiar with Fourier series, Lebesgue integration, Hilbert space, and ordinary differential equa tions in finite-dimensional space. This book is primarily an exposition of certain methods of topological dynamics that have been found to be very useful in the analysis of physical systems but appear to be well known only to specialists. The purpose of the book is twofold: to present the material in such a way that the applications-oriented reader will be encouraged to apply these methods in the study of those physical systems of personal interest, and to make the coverage sufficient to render the current research literature intelligible, preparing the more mathematically inclined reader for research in this particular area of applied mathematics. We present only that portion of the theory which seems most useful in applications to physical systems. Adopting the view that the world is deterministic, we consider our basic problem to be predicting the future for a given physical system. This prediction is to be based on a known equation of evolution, describing the forward-time behavior of the system, but it is to be made without explicitly solving the equation.




Evolution Equations


Book Description

The proceedings of a summer school held in 2015 whose theme was long time behavior and control of evolution equations.




Numerical Methods for Evolutionary Differential Equations


Book Description

Develops, analyses, and applies numerical methods for evolutionary, or time-dependent, differential problems.