Data-Driven Evolutionary Optimization


Book Description

Intended for researchers and practitioners alike, this book covers carefully selected yet broad topics in optimization, machine learning, and metaheuristics. Written by world-leading academic researchers who are extremely experienced in industrial applications, this self-contained book is the first of its kind that provides comprehensive background knowledge, particularly practical guidelines, and state-of-the-art techniques. New algorithms are carefully explained, further elaborated with pseudocode or flowcharts, and full working source code is made freely available. This is followed by a presentation of a variety of data-driven single- and multi-objective optimization algorithms that seamlessly integrate modern machine learning such as deep learning and transfer learning with evolutionary and swarm optimization algorithms. Applications of data-driven optimization ranging from aerodynamic design, optimization of industrial processes, to deep neural architecture search are included.




Proceedings of 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021)


Book Description

This book includes original, peer-reviewed research papers from the ICAUS 2021, which offers a unique and interesting platform for scientists, engineers and practitioners throughout the world to present and share their most recent research and innovative ideas. The aim of the ICAUS 2021 is to stimulate researchers active in the areas pertinent to intelligent unmanned systems. The topics covered include but are not limited to Unmanned Aerial/Ground/Surface/Underwater Systems, Robotic, Autonomous Control/Navigation and Positioning/ Architecture, Energy and Task Planning and Effectiveness Evaluation Technologies, Artificial Intelligence Algorithm/Bionic Technology and Its Application in Unmanned Systems. The papers showcased here share the latest findings on Unmanned Systems, Robotics, Automation, Intelligent Systems, Control Systems, Integrated Networks, Modeling and Simulation. It makes the book a valuable asset for researchers, engineers, and university students alike.




Intelligent Evolutionary Optimization


Book Description

Intelligent Evolutionary Optimization introduces biologically-inspired intelligent optimization algorithms to address complex optimization problems and provide practical solutions for tackling combinatorial optimization problems. The book explores efficient search and optimization methods in high-dimensional spaces, particularly for high-dimensional multi-objective optimization problems, offering practical guidance and effective solutions across various domains. Providing practical solutions, methods, and tools to tackle complex optimization problems and enhance modern optimization techniques, this book will be a valuable resource for professionals seeking to enhance their understanding and proficiency in intelligent evolutionary optimization.• Introduces biologically-inspired intelligent optimization algorithms capable of effectively solving complex optimization problems, teaching readers how to apply these algorithms and improve existing optimization techniques • Explores multi-objective optimization problems in high-dimensional spaces for readers to understand how to perform efficient search and optimization, acquiring strategies and tools adapted to high-dimensional environments • Presents the practical applications of intelligent evolutionary optimization in various fields to help readers gain insights into the latest trends and application scenarios in the field and receive practical guidance and solutions







Evolutionary and Swarm Intelligence Algorithms


Book Description

This book is a delight for academics, researchers and professionals working in evolutionary and swarm computing, computational intelligence, machine learning and engineering design, as well as search and optimization in general. It provides an introduction to the design and development of a number of popular and recent swarm and evolutionary algorithms with a focus on their applications in engineering problems in diverse domains. The topics discussed include particle swarm optimization, the artificial bee colony algorithm, Spider Monkey optimization algorithm, genetic algorithms, constrained multi-objective evolutionary algorithms, genetic programming, and evolutionary fuzzy systems. A friendly and informative treatment of the topics makes this book an ideal reference for beginners and those with experience alike.




Optimization of Complex Systems: Theory, Models, Algorithms and Applications


Book Description

This book contains 112 papers selected from about 250 submissions to the 6th World Congress on Global Optimization (WCGO 2019) which takes place on July 8–10, 2019 at University of Lorraine, Metz, France. The book covers both theoretical and algorithmic aspects of Nonconvex Optimization, as well as its applications to modeling and solving decision problems in various domains. It is composed of 10 parts, each of them deals with either the theory and/or methods in a branch of optimization such as Continuous optimization, DC Programming and DCA, Discrete optimization & Network optimization, Multiobjective programming, Optimization under uncertainty, or models and optimization methods in a specific application area including Data science, Economics & Finance, Energy & Water management, Engineering systems, Transportation, Logistics, Resource allocation & Production management. The researchers and practitioners working in Nonconvex Optimization and several application areas can find here many inspiring ideas and useful tools & techniques for their works.




An Introduction to Genetic Algorithms


Book Description

Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.




The Master Algorithm


Book Description

Recommended by Bill Gates A thought-provoking and wide-ranging exploration of machine learning and the race to build computer intelligences as flexible as our own In the world's top research labs and universities, the race is on to invent the ultimate learning algorithm: one capable of discovering any knowledge from data, and doing anything we want, before we even ask. In The Master Algorithm, Pedro Domingos lifts the veil to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He assembles a blueprint for the future universal learner--the Master Algorithm--and discusses what it will mean for business, science, and society. If data-ism is today's philosophy, this book is its bible.




Power System Optimization


Book Description

An original look from a microeconomic perspective for power system optimization and its application to electricity markets Presents a new and systematic viewpoint for power system optimization inspired by microeconomics and game theory A timely and important advanced reference with the fast growth of smart grids Professor Chen is a pioneer of applying experimental economics to the electricity market trading mechanism, and this work brings together the latest research A companion website is available Edit




Nostradamus 2013: Prediction, Modeling and Analysis of Complex Systems


Book Description

Prediction of behavior of the dynamical systems, analysis and modeling of its structure is vitally important problem in engineering, economy and science today. Examples of such systems can be seen in the world around us and of course in almost every scientific discipline including such “exotic” domains like the earth’s atmosphere, turbulent fluids, economies (exchange rate and stock markets), population growth, physics (control of plasma), information flow in social networks and its dynamics, chemistry and complex networks. To understand such dynamics and to use it in research or industrial applications, it is important to create its models. For this purpose there is rich spectra of methods, from classical like ARMA models or Box Jenkins method to such modern ones like evolutionary computation, neural networks, fuzzy logic, fractal geometry, deterministic chaos and more. This proceeding book is a collection of the accepted papers to conference Nostradamus that has been held in Ostrava, Czech Republic. Proceeding also comprises of outstanding keynote speeches by distinguished guest speakers: Guanrong Chen (Hong Kong), Miguel A. F. Sanjuan (Spain), Gennady Leonov and Nikolay Kuznetsov (Russia), Petr Škoda (Czech Republic). The main aim of the conference is to create periodical possibility for students, academics and researchers to exchange their ideas and novel methods. This conference will establish forum for presentation and discussion of recent trends in the area of applications of various predictive methods for researchers, students and academics.