Thermal Conductivity 16


Book Description

The International Thermal Conductivity Conference was started in 1961 with the initiative of Mr. C. F. Lucks and grew out of the needs of researchers in the field. From 1961 to 1973 the Confer ences were held annually, and have been held biennially since 1975 when our Center for Information and Numerical Data Analysis and Synthesis (CINDAS) of Purdue University became the permanent Spon sor of the Conferences. These Conferences provide a broadly based forum for researchers actively working on the thermal conductivity and closely related properties to convene on a regular basis to ex change their ideas and experiences and report their findings and results. The Conferences have been self-perpetuating and are an example of how a technical community with a common purpose can transcend the invisible, artificial barriers between disciplines and gather togeth er in increasing numbers without the need of national publicity and continuing funding support, when they see something worthwi1e going on. It is believed that this series of Conferences not only will grow stronger, but will set an example for researchers in other fields on how to jointly attack their own problem areas.




Thermal Contact Conductance


Book Description

Heat transfer between two bodies in thermal contact is of fundamental importance in a wide variety of applications ranging from industrial and domestic processes to fundamental biology and chemistry. This book covers both the theoretical and practical aspects of thermal contact conductance. The theoretical discussion covers heat transfer through spots, joints, and surfaces, as well as the role of interstitial materials (both planned and inadvertent). The practical discussion includes formulae and data for use in designing heat-transfer equipment for a variety of joints, including special geometries and configurations.













Thermal Conductivity 15


Book Description

Once again, it gives me a great pleasure to pen the Foreword to the Proceedings of the 15th International Conference on Thermal Conductivity. As in the past, these now biannual conferences pro vide a broadly based forum for those researchers actively working on this important property of matter to convene on a regular basis to exchange their experiences and report their findings. As it is apparent from the Table of Contents, the 15th Conference represents perhaps the broadest coverage of subject areas to date. This is indicative of the times as the boundaries between disciplines be come increasingly diffused. I am sure the time has come when Con ference Chairmen in coming years will be soliciting contributions not only in the physical sciences and engineering', but will actively seek contributions from the earth sciences and life sciences as well. Indeed, the thermal conductivity and related properties of geological and biological materials are becoming of increasing im portance to our way of life. As it can be seen from the summary table, unfortunately, proceedings have been published only for six of the fifteen con ferences. It is hoped that hereafter this Series will become increasingly well known and be recognized as a major vehicle for the reporting of research on thermal conductivity.




GAPCON-THERMAL-3 Verification and Comparison to In-reactor Data


Book Description

The GAPCON-THERMAL-3 computer code is an outgrowth of the GAPCON series, written in response to a need to predict the interacting path-dependent thermal and mechanical behavior of oxide fuel rods.







Thermal Spreading and Contact Resistance


Book Description

Single source reference on how applying thermal spreading and contact resistance can solve problems across a variety of engineering fields Thermal Spreading and Contact Resistance offers comprehensive coverage of the key information that engineers need to know to understand thermal spreading and contact resistance, including numerous predictive models for determining thermal spreading resistance and contact conductance of mechanical joints and interfaces, plus detailed examples throughout the book. Written by two of the leading experts in the field, Thermal Spreading and Contact Resistance includes information on: Contact conductance, mass transfer, transport from super-hydrophobic surfaces, droplet/surface phase change problems, and tribology applications such as sliding surfaces and roller bearings Heat transfer in micro-devices and thermal spreaders, orthotropic systems, and multi-source applications for electronics thermal management applications Fundamental principles, thermal spreading in isotropic half-space regions, circular flux tubes and disc spreaders, and rectangular flux channels and compound spreaders Systems with non-uniform sink plane conductance, transient spreading resistance, and contact resistance between both non-conforming and conforming rough surfaces Providing comprehensive coverage of the subject, Thermal Spreading and Contact Resistance is an essential resource for mechanical, aerospace, and chemical engineers working on research in the fields of heat transfer, thermal management of electronics, and tribology, as well as thermal engineers and researchers in the field of thermal physics.