Structure of Nucleon Excited States from Lattice QCD


Book Description

Quantum Chromodynamics (QCD) describes the interactions between elementary quarks and gluons as they compose the nucleons at the heart of atomic structure. The interactions give rise to complexity that can only be examined via numerical simulations on supercomputers. This work provides an introduction to the numerical simulations of lattice QCD and establishes new formalisms relevant to understanding the structure of nucleons and their excited states. The research opens with an examination of the non-trivial QCD vacuum and the emergence of “centre domains.” The focus then turns to establishing a novel Parity-Expanded Variational Analysis (PEVA) technique solving the important problem of isolating baryon states moving with finite momentum. This seminal work provides a foundation for future calculations of baryon properties. Implementation of the PEVA formalism discloses important systematic errors in conventional calculations and reveals the structure of nucleon excited states from the first principles of QCD for the first time.




Hadronic Physics from Lattice QCD


Book Description

Particle and nuclear physicists frequently take results from Lattice QCD at their face value without probing into their reliability or sophistication. This attitude usually stems from a lack of knowledge of the field. The aim of the present volume is to rectify this by introducing in an elementary way several topics, which we believe are appropriate for, and of possible interest to, both particle and nuclear physicists who are non-experts in the field.




Exclusive Reactions at High Momentum Transfer IV


Book Description

The Proceedings include talks given at the 4th Workshop on Exclusive Reactions at High Momentum Transfer at Jefferson Lab, Newport News, VA USA, the world's leading facility performing research on nuclear, hadronic and quark-gluon structure of matter. Exclusive reactions are becoming one of the major sources of information about the deep structure of the nucleons and other hadrons. The workshop focused on the application of a variety of exclusive reactions at high momentum transfer, utilizing unpolarized and polarized beams and targets, to obtain information about nucleon ground state and excited state structure at short distances. This is a subject which is central to the programs of current accelerators and especially planned future facilities. The topics include: generalized parton distributions, deeply virtual Compton scattering, deeply virtual meson production (DVMP), transverse structure of hadrons (TMD), hadron form factors ? elastic and transition, quantum chromodynamics (perturbative, non-perturbative, lattice calculations), and physics to study at an Electron Ion Collider.




NSTAR 2001


Book Description

The study of N∗s can provide us with critical insights into the nature of QCD in the confinement domain. The keys to progress in this domain are the identification of its important degrees of freedom and the effective forces between them. The nucleon is the simplest system in which the nonabelian character of QCD is manifest. There are Nc quarks in a baryon because there are Nc colors, and as a consequence Gell-Mann and Zweig were forced to introduce the quarks in order to describe the octet and decuplet baryons.This volume gives a status report on the recent experimental and theoretical results in the field of nucleon resonance physics. A wealth of new high precision data was presented from facilities around the world, such as BES, BNL, ELSA, GRAAL, JLab, MAMI, MIT/Bates, SPring8, and Yerevan. Particular emphasis was laid on polarization degrees of freedom and large acceptance detectors as precision tools for studying small but important transition amplitudes, and the helicity (spin) structure of the nucleon. There were new results describing the nucleon resonance structure on the basis of quantum chromodynamics, either directly in terms of quarks and gluons by means of lattice gauge theory, or in terms of hadrons in the framework of chiral field theories. A status report on duality showed the surprising connections between the physics of the low energy nucleon resonance region and the realm of quark structure functions in deep inelastic scattering. Finally, this volume contains a summary report of the BRAG workshop, devoted to the analysis of baryon resonances.




Lattice Hadron Physics


Book Description

Lattice Hadron Physics draws upon the developments made in recent years in implementing chirality on the lattice via the overlap formalism. These developments exploit chiral effective field theory in order to extrapolate lattice results to physical quark masses, new forms of improving operators to remove lattice artefacts, analytical studies of finite-volume effects in hadronic observables, and state-of-the-art lattice calculations of excited resonances. This volume, comprised of selected lectures, is designed to assist those outside the field who want quickly to become literate in these topics. As such, it provides graduate students and experienced researchers in other areas of hadronic physics with the background through which they can appreciate, if not become active in, contemporary lattice-gauge theory and its applications to hadronic phenomena.




Nstar 2004 - Proceedings Of The Workshop On The Physics Of Excited Nucleons


Book Description

This book covers recent advances in the field of nucleon resonances presented at the IX International Workshop on the Physics of Excited Baryons, NSTAR2004. A complete overview of the most recent experimental results obtained worldwide on baryon spectroscopy is presented together with theoretical progress on related topics ranging from resonance parameters extraction to lattice-QCD calculations through effective field theory. Of particular interest, a large part of the book is devoted to exotic states with quantum numbers of pentaquarks, whose recent discovery represents a new chapter in hadronic physics.The proceedings have been selected for coverage in:• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)• CC Proceedings — Engineering & Physical Sciences




Electromagnetic Form Factors of Charmed Baryons in Lattice QCD


Book Description

This thesis presents the first lattice quantum chromodynamics (QCD) approach to the charmed baryon regime, building on the knowledge and experience gained with former lattice QCD applications to nucleon structure. The thesis provides valuable insights into the dynamics of yet unobserved charmed baryon systems. Most notably, it confirms that the expectations of model or effective field theoretical calculations of heavy-hadron systems hold qualitatively, while also demonstrating that they conflict with the quantitative results, pointing to a tension between these complementary approaches. Further, the book presents a cutting-edge approach to understanding the structure and dynamics of hadrons made of quarks and gluons using QCD, and successfully extends the approach to charmed hadrons. In particular, the thesis investigate a peculiar property of charmed hadrons whose dynamics, i.e., structure, deviates from their counterparts, e.g., those of protons and neutrons, by employing the lattice QCD approach —a state-of-the-art numerical method and the powerful ab initio, non-perturbative method.




Large Nc Qcd 2004 - Proceedings Of The Workshop


Book Description

The large Nc limit plays a fundamental role in the study of non-abelian gauge theories such as quantum chromodynamics (QCD). Since its discovery in 1974 by 't Hooft, the 1/Nc expansion has provided crucial insights into the non-perturbative aspects of gauge theories. The expansion implemented at the effective theory level is one of the fundamental tools currently in use in hadronic physics; there are important effects and relations that follow from the 1/Nc expansion, which held remarkably well in the real world with Nc= 3. The 1/Ncexpansion also plays a central role in the recently discovered connections between non-Abelian gauge and string theories, promising new ways to analyze the non-perturbative domain of gauge theories.This volume contains contributions from leading theorists and covers the recent developments in the 1/Nc expansion in QCD. The topics addressed include confinement, AdS/CFT correspondence and the string-QCD connection, topology in large Nc, lattice QCD, and a variety of applications to mesons and baryons.




Electromagnetic Interactions and Hadronic Structure


Book Description

Written by leading experts in the field, this book provides an authoritative overview on electromagnetic interactions. It describes the main features of the experimental data and the theoretical ideas used in their interpretation, and is an essential reference for graduate students and researchers in particle physics and electromagnetic interactions.




Elementary Particles And Emergent Phase Space


Book Description

The Standard Model of elementary particles, although very successful, contains various elements that are put in by hand. Understanding their origin requires going beyond the model and searching for “new physics”. The present book elaborates on one particular proposal concerning such physics. While the original conception is 50 years old, it has not lost its appeal over time. Its basic idea is that space — an arena of events treated in the Standard Model as a classical background — is a concept which emerges from a strictly discrete quantum layer in the limit of large quantum numbers. This book discusses an extension of this view by replacing space with phase space. It combines the results of the author's research papers and places them in much broader philosophical and phenomenological contexts, thus providing further arguments in favor of the proposed alternative. The book should be of interest to the philosophically-minded readers who are willing to contemplate unorthodox ideas on the very nature of the world.