Selected Exercises in Algebra


Book Description

This book, the first of two volumes, contains over 250 selected exercises in Algebra which have featured as exam questions for the Arithmetic course taught by the authors at the University of Pisa. Each exercise is presented together with one or more solutions, carefully written with consistent language and notation. A distinguishing feature of this book is the fact that each exercise is unique and requires some creative thinking in order to be solved. The themes covered in this volume are: mathematical induction, combinatorics, modular arithmetic, Abelian groups, commutative rings, polynomials, field extensions, finite fields. The book includes a detailed section recalling relevant theory which can be used as a reference for study and revision. A list of preliminary exercises introduces the main techniques to be applied in solving the proposed exam questions. This volume is aimed at first year students in Mathematics and Computer Science.




Exercises in Algebra


Book Description

This book is a collection of exercises for courses in higher algebra, linear algebra and geometry. It is helpful for postgraduate students in checking the solutions and answers to the exercises.




Introduction to Applied Linear Algebra


Book Description

A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.




Linear Algebra Problem Book


Book Description

Linear Algebra Problem Book can be either the main course or the dessert for someone who needs linear algebraand today that means every user of mathematics. It can be used as the basis of either an official course or a program of private study. If used as a course, the book can stand by itself, or if so desired, it can be stirred in with a standard linear algebra course as the seasoning that provides the interest, the challenge, and the motivation that is needed by experienced scholars as much as by beginning students. The best way to learn is to do, and the purpose of this book is to get the reader to DO linear algebra. The approach is Socratic: first ask a question, then give a hint (if necessary), then, finally, for security and completeness, provide the detailed answer.




A First Book in Algebra


Book Description




Exercises And Problems In Linear Algebra


Book Description

This book contains an extensive collection of exercises and problems that address relevant topics in linear algebra. Topics that the author finds missing or inadequately covered in most existing books are also included. The exercises will be both interesting and helpful to an average student. Some are fairly routine calculations, while others require serious thought.The format of the questions makes them suitable for teachers to use in quizzes and assigned homework. Some of the problems may provide excellent topics for presentation and discussions. Furthermore, answers are given for all odd-numbered exercises which will be extremely useful for self-directed learners. In each chapter, there is a short background section which includes important definitions and statements of theorems to provide context for the following exercises and problems.




Algebra: Chapter 0


Book Description

Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.




Exercises in Modules and Rings


Book Description

This volume offers a compendium of exercises of varying degree of difficulty in the theory of modules and rings. It is the companion volume to GTM 189. All exercises are solved in full detail. Each section begins with an introduction giving the general background and the theoretical basis for the problems that follow.




Matrix Algebra: Exercises and Solutions


Book Description

This book contains over 300 exercises and solutions that together cover a wide variety of topics in matrix algebra. They can be used for independent study or in creating a challenging and stimulating environment that encourages active engagement in the learning process. The requisite background is some previous exposure to matrix algebra of the kind obtained in a first course. The exercises are those from an earlier book by the same author entitled Matrix Algebra From a Statistician's Perspective. They have been restated (as necessary) to stand alone, and the book includes extensive and detailed summaries of all relevant terminology and notation. The coverage includes topics of special interest and relevance in statistics and related disciplines, as well as standard topics. The overlap with exercises available from other sources is relatively small. This collection of exercises and their solutions will be a useful reference for students and researchers in matrix algebra. It will be of interest to mathematicians and statisticians.




Introduction to Linear Algebra


Book Description

This is a short text in linear algebra, intended for a one-term course. In the first chapter, Lang discusses the relation between the geometry and the algebra underlying the subject, and gives concrete examples of the notions which appear later in the book. He then starts with a discussion of linear equations, matrices and Gaussian elimination, and proceeds to discuss vector spaces, linear maps, scalar products, determinants, and eigenvalues. The book contains a large number of exercises, some of the routine computational type, while others are conceptual.