Organic Rankine Cycle (ORC) Power Systems


Book Description

Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications provides a systematic and detailed description of organic Rankine cycle technologies and the way they are increasingly of interest for cost-effective sustainable energy generation. Popular applications include cogeneration from biomass and electricity generation from geothermal reservoirs and concentrating solar power installations, as well as waste heat recovery from gas turbines, internal combustion engines and medium- and low-temperature industrial processes. With hundreds of ORC power systems already in operation and the market growing at a fast pace, this is an active and engaging area of scientific research and technical development. The book is structured in three main parts: (i) Introduction to ORC Power Systems, Design and Optimization, (ii) ORC Plant Components, and (iii) Fields of Application. - Provides a thorough introduction to ORC power systems - Contains detailed chapters on ORC plant components - Includes a section focusing on ORC design and optimization - Reviews key applications of ORC technologies, including cogeneration from biomass, electricity generation from geothermal reservoirs and concentrating solar power installations, waste heat recovery from gas turbines, internal combustion engines and medium- and low-temperature industrial processes - Various chapters are authored by well-known specialists from Academia and ORC manufacturers







Energy Recovery Technology for Building Applications


Book Description

This book discusses energy recovery technology, a green innovation that can be used in buildings. This technology reduces energy consumption in buildings and provides energy savings to conventional mechanical ventilation systems. Divided into eight chapters, the book provides in-depth technical information, state-of-the-art research, and latest developments in the energy recovery technology field. Case-studies describe worldwide applications of energy recovery technology and its integrated system for building services. This book will be used as a general and technical reference book for students, engineers, professionals, practitioners, scientists, and researchers seeking to reduce energy consumption of buildings in various climatic conditions. Presents an overview of energy consumption scenarios in buildings and the needs for energy-efficient technologies at regional and global levels; Explains models and methods of energy recovery technology performance evaluation; Inspires further research into energy recovery technology for building applications.




Automotive Exhaust Emissions and Energy Recovery


Book Description

Concerns for fuel economy and reduced emissions have turned the attention of automotive internal combustion engine manufacturers to the exhaust system and towards technological system development to account for the significant levels of potential energy that can be recovered. The present volume on Automotive Exhaust Emissions and Energy Recovery for both gasoline and diesel engines is therefore both timely and appropriate. Whereas diesel engines have been predominantly turbocharged, only a relatively small percentage of gasoline engines are similarly equipped, which has led to significant efforts by engine manufacturers in recent years to downsize and down-speed these engines. On the other hand, the relative focus in diesel engine development in terms of emissions and exhaust energy recovery has shifted toward devices other than the turbocharger for enhanced energy recovery and emissions control technologies in order to allow the diesel engines of the future to keep up with the dual-demand for very low emissions and increasing levels of fuel economy. The book focuses on the exhaust system and the technologies and methods used to reduce emissions and increase fuel economy by capitalising on the exhaust gas energy availability (either in the form of gas kinetic energy or as waste heat extracted from the exhaust gas). It is projected that in the short to medium term, advances in exhaust emissions and energy recovery technologies will lead the way in internal combustion engine development and pave the way towards increasing levels of engine hybridisation until fully electric vehicle technology can claim a level of maturity and corresponding market shares to turn the bulk of this focus away from the internal combustion engine. This book is aimed at engine research professionals in the industry and academia, but also towards students of powertrain engineering. The collection of articles in this book reviews the fundamentals of relevance, recent exhaust system technologies, details recent or on-going projects and uncovers future research directions and potentials.




Organic Rankine Cycle for Energy Recovery System


Book Description

The rising trend in the global energy demand poses new challenges to humankind. The energy and mechanical engineering sectors are called to develop new and more environmentally friendly solutions to harvest residual energy from primary production processes. The Organic Rankine Cycle (ORC) is an emerging energy system for power production and waste heat recovery. In the near future, this technology can play an increasing role within the energy generation sectors and can help achieve the carbon footprint reduction targets of many industrial processes and human activities. This Special Issue focuses on selected research and application cases of ORC-based waste heat recovery solutions. Topics included in this publication cover the following aspects: performance modeling and optimization of ORC systems based on pure and zeotropic mixture working fluids; applications of waste heat recovery via ORC to gas turbines and reciprocating engines; optimal sizing and operation of ORC under combined heat and power and district heating application; the potential of ORC on board ships and related issues; life cycle analysis for biomass application; ORC integration with supercritical CO2 cycle; and the proper design of the main ORC components, including fluid dynamics issues. The current state of the art is considered and some cutting-edge ORC technology research activities are examined in this book.







Thermodynamics In Nuclear Power Plant Systems


Book Description

This book covers the fundamentals of thermodynamics required to understand electrical power generation systems, honing in on the application of these principles to nuclear reactor power systems. It includes all the necessary information regarding the fundamental laws to gain a complete understanding and apply them specifically to the challenges of operating nuclear plants. Beginning with definitions of thermodynamic variables such as temperature, pressure and specific volume, the book then explains the laws in detail, focusing on pivotal concepts such as enthalpy and entropy, irreversibility, availability, and Maxwell relations. Specific applications of the fundamentals to Brayton and Rankine cycles for power generation are considered in-depth, in support of the book’s core goal- providing an examination of how the thermodynamic principles are applied to the design, operation and safety analysis of current and projected reactor systems. Detailed appendices cover metric and English system units and conversions, detailed steam and gas tables, heat transfer properties, and nuclear reactor system descriptions.




Exhaust System Energy Management of Internal Combustion Engines


Book Description

Today, the investigation of fuel economy improvements in internal combustion engines (ICEs) has become the most significant research interest among the automobile manufacturers and researchers. The scarcity of natural resources, progressively increasing oil prices, carbon dioxide taxation and stringent emission regulations all make fuel economy research relevant and compelling. The enhancement of engine performance solely using incylinder techniques is proving increasingly difficult and as a consequence the concept of exhaust energy recovery has emerged as an area of considerable interest. Three main energy recovery systems have been identified that are at various stages of investigation. Vapour power bottoming cycles and turbo-compounding devices have already been applied in commercially available marine engines and automobiles. Although the fuel economy benefits are substantial, system design implications have limited their adaptation due to the additional components and the complexity of the resulting system. In this context, thermo-electric (TE) generation systems, though still in their infancy for vehicle applications have been identified as attractive, promising and solid state candidates of low complexity. The performance of these devices is limited to the relative infancy of materials investigations and module architectures. There is great potential to be explored. The initial modelling work reported in this study shows that with current materials and construction technology, thermo-electric devices could be produced to displace the alternator of the light duty vehicles, providing the fuel economy benefits of 3.9%-4.7% for passenger cars and 7.4% for passenger buses. More efficient thermo-electric materials could increase the fuel economy significantly resulting in a substantially improved business case. The dynamic behaviour of the thermo-electric generator (TEG) applied in both, main exhaust gas stream and exhaust gas recirculation (EGR) path of light duty and heavy duty engines were studied through a series of experimental and modelling programs. The analyses of the thermo-electric generation systems have highlighted the need for advanced heat exchanger design as well as the improved materials to enhance the performance of these systems. These research requirements led to the need for a systems evaluation technique typified by hardware-in-the-loop (HIL) testing method to evaluate heat exchange and materials options. HIL methods have been used during this study to estimate both the output power and the exhaust back pressure created by the device. The work has established the feasibility of a new approach to heat exchange devices for thermo-electric systems. Based on design projections and the predicted performance of new materials, the potential to match the performance of established heat recovery methods has been demonstrated.