Experimental and Computational Investigation of Lift-Enhancing Tabs on a Multi-Element Airfoil


Book Description

An experimental and computational investigation of the effect of lift-enhancing tabs on a two-element airfoil has been conducted. The objective of the study was to develop an understanding of the flow physics associated with lift-enhancing tabs on a multi-element airfoil. An NACA 63(2)-215 ModB airfoil with a 30% chord fowler flap was tested in the NASA Ames 7- by 10-Foot Wind Tunnel. Lift-enhancing tabs of various heights were tested on both the main element and the flap for a variety of flap riggings. A combination of tabs located at the main element and flap trailing edges increased the airfoil lift coefficient by 11% relative to the highest lift coefficient achieved by any baseline configuration at an angle of attack of 0 deg, and C(sub 1max) was increased by 3%. Computations of the flow over the two-element airfoil were performed using the two-dimensional incompressible Navier-Stokes code INS2D-UP. The computed results predicted all of the trends observed in the experimental data quite well. In addition, a simple analytic model based on potential flow was developed to provide a more detailed understanding of how lift-enhancing tabs work. The tabs were modeled by a point vortex at the air-foil or flap trailing edge. Sensitivity relationships were derived which provide a mathematical basis for explaining the effects of lift-enhancing tabs on a multi-element airfoil. Results of the modeling effort indicate that the dominant effects of the tabs on the pressure distribution of each element of the airfoil can be captured with a potential flow model for cases with no flow separation. Ashby, Dale L. Ames Research Center LIFT; AIRFOILS; TABS (CONTROL SURFACES); WIND TUNNEL TESTS; ANGLE OF ATTACK; NAVIER-STOKES EQUATION; COMPUTATIONAL FLUID DYNAMICS; GRID GENERATION (MATHEMATICS); AIRFOIL PROFILES; FLAPS (CONTROL SURFACES); TRAILING EDGES; INCOMPRESSIBLE FLOW; DATA CORRELATION; PREDICTION ANALYSIS TECHNIQUES; VORTICES; POTENTIAL FLOW; PRESSURE DISTRIBUTION; AERODYNAMIC C...










Atmospheric Flight in the Twentieth Century


Book Description

All technologies differ from one another. They are as varied as humanity's interaction with the physical world. Even people attempting to do the same thing produce multiple technologies. For example, John H. White discovered more than l 1000 patents in the 19th century for locomotive smokestacks. Yet all technologies are processes by which humans seek to control their physical environment and bend nature to their purposes. All technologies are alike. The tension between likeness and difference runs through this collection of papers. All focus on atmospheric flight, a twentieth-century phenomenon. But they approach the topic from different disciplinary perspectives. They ask disparate questions. And they work from distinct agendas. Collectively they help to explain what is different about aviation - how it differs from other technologies and how flight itself has varied from one time and place to another. The importance of this topic is manifest. Flight is one of the defining technologies of the twentieth century. Jay David Bolter argues in Turing's Man that certain technologies in certain ages have had the power not only to transform society but also to shape the way in which people understand their relationship with the physical world. "A defining technology," says Bolter, "resembles a magnifying glass, which collects and focuses seemingly disparate ideas in a culture into one bright, sometimes piercing ray." 2 Flight has done that for the twentieth century.




AIAA Journal


Book Description







Twenty-Third Symposium on Naval Hydrodynamics


Book Description

"Vive la Revolution!" was the theme of the Twenty-Third Symposium on Naval Hydrodynamics held in Val de Reuil, France, from September 17-22, 2000 as more than 140 experts in ship design, construction, and operation came together to exchange naval research developments. The forum encouraged both formal and informal discussion of presented papers, and the occasion provides an opportunity for direct communication between international peers. This book includes sixty-three papers presented at the symposium which was organized jointly by the Office of Naval Research, the National Research Council (Naval Studies Board), and the Bassin d'Essais des Carènes. This book includes the ten topical areas discussed at the symposium: wave-induced motions and loads, hydrodynamics in ship design, propulsor hydrodynamics and hydroacoustics, CFD validation, viscous ship hydrodynamics, cavitation and bubbly flow, wave hydrodynamics, wake dynamics, shallow water hydrodynamics, and fluid dynamics in the naval context.







Annual Commencement


Book Description