Numerical and Experimental Study of Free and Impinging Jets


Book Description

This book deals with the numerical and experimental study of oscillations in laminar free and impinging jets. A finite volume algorithm based on non-orthogonal cells has been used to solve the transient, incompressible Navier-Stokes equations for two dimensional flow. The code has been employed for the prediction of flow and thermal oscillations in isothermal and non-isothermal jets. For free jets, the effects of parameters such as Reynolds number, inlet temperature and jet orientation on oscillations have been studied. For impinging jet flow, the effects of stand-off distance, Reynolds number and inlet temperature on mean flow as well as jet oscillations have been studied.




The Theory of Turbulent Jets


Book Description

The author's first monograph on turbulent jets, in 1936, dealt solely with a free submerged jet. Since that time, the theory of the turbulent jet has been developed in many published works both in the USSR and abroad: it has been enriched with a large amount of experimental material and has been applied in many new fields of engineering. In the last 10 years very substantial progress has been made, and it has now become possible to go beyond the free submerged jet and to solve the problem of a jet in a stream of fluid, to take into account the interaction between the jet and solid walls, to ascertain the relationship between the contour of the jet and the ratio of its density to the density of the surrounding medium, and to establish the characteristic features of a supersonic jet. This monograph contains the results of further research by the author and his colleagues, as well as a critical reappraisal of the more important theoretical and experimental data published by other investigators. The first section deals with the theory of a turbulent jet of incompressible fluid. It gives a systematic analysis of numerous experimental data on velocity profiles, temperature, and the impurity concentration, as well as the outlines of the turbulent mixing lone. The second section sets forth the theory of turbulent gas jets, including strongly preheated and supersonic jets. The theory of free turbulence in a gas, suitable in principle for any degree of compressibility, is revised, and the equations are derived for motion and heat exchange in the boundary layer of a jet at very high temperature. The third section solves several problems of the spreading of jets in finite and semifinite space, and the fourth section describes various applications of the theory of jets, many of which are reported for the first time or have been significantly revised.




Masters Theses in the Pure and Applied Sciences


Book Description

Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS)* at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dis semination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all concerned if the printing and distribution of the volumes were handled by an international publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Corporation of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 38 (thesis year 1993) a total of 13,787 thesis titles from 22 Canadian and 164 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this impor tant annual reference work. While Volume 38 reports theses submitted in 1993, on occasion, certain uni versities do report theses submitted in previous years but not reported at the time.




Turbulent Jets


Book Description

Turbulent Jets







Survey of Literature on Flow Characteristics of a Single Turbulent Jet Impinging on a Flat Plate


Book Description

Flow characteristics of single jets impinging on flat surfaces have been studied by many investigators. The results of some of the numerous studies are summarized herein. Suggested methods for determining velocities and pressures on which to base heat-transfer correlations for use in impingement cooling design are presented.




Numerical Solution of Steady and Periodically Pulsed Two-Dimensional Turbulent Free Jets


Book Description

The flow fields of a steady and a periodically pulsed two-dimensional turbulent free jet have been studied by solving the thin shear layer equations by the Keller Box method in transformed variable form. A constant eddy-viscosity formulation was used to model the Reynolds shear stress term. For the steady jet, calculations agree well with documented experimental data. Computed results of the unsteady jet indicate that the mean flow characteristics follow closely those of the steady jet and compare well with available experimental data. For sufficiently high frequency and amplitude of pulsation or at large streamwise distance, significant unsteady effects occur in the instantaneous quantities. (Author).