Numerical and Experimental Investigation of Water Introduction Into DI Diesel Engine Combustion


Book Description

Im vorliegenden Band 3/2008 berichtet Herr Eckert uber die Ergebnisse aus Untersuchungen zur Partikel- und Stickoxidminimierung bei Dieselmotoren durch Wassereinbringung. Das primare Ziel ist dabei die innermotorische Reduzierung der thermischen Stickoxidbildung. Es sind unterschiedliche Methoden der wassereinbringung in den dieselmotorischen Verbrennungsprozess moglich; beispielsweise die Einspritzung von Wasser in das Ansaugsystem, eine direkte Einspritzung von Wasser in den Brennraum sowie die Wassereinbringung mit Diesel- Wasser Emulsionen. Diese Massnahmen sind unter anderem bei dieselmotoren, die zumindest teilweise mit Schwerol betrieben werden, besonders interessant, da dort klassische Methoden zur Schadstoffreduktion, wie z.B. Abgasruckfuhrung oder Abgasnachbehandlung, nur mit erheblichem Aufwand eingesetzt werden konnen.










Principles of Combustion


Book Description

The new edition of a classic textbook on combustion principles and processes, covering the latest developments in fuels and applications in a student-friendly format Principles of Combustion provides clear and authoritative coverage of chemically reacting flow systems. Detailed and accessible chapters cover key combustion topics such as chemical kinetics, reaction mechanisms, laminar flames, droplet evaporation and burning, and turbulent reacting flows. Numerous figures, end-of-chapter problems, extensive reference materials, and examples of specific combustion applications are integrated throughout the text. Newly revised and expanded, Principles of Combustion makes it easier for students to absorb and master each concept covered by presenting content through smaller, bite-sized chapters. Two entirely new chapters on turbulent reacting flows and solid fuel combustion are accompanied by additional coverage of low carbon fuels such as hydrogen, natural gas, and renewable fuels. This new edition contains a wealth of new homework problems, new application examples, up-to-date references, and access to a new companion website with MATLAB files that students can use to run different combustion cases. Fully updated to meet the needs of today's students and instructors, Principles of Combustion Provides problem-solving techniques that draw from thermodynamics, fluid mechanics, and chemistry Addresses contemporary topics such as zero carbon combustion, turbulent combustion, and sustainable fuels Discusses the role of combustion emissions in climate change and the need for reducing reliance on carbon-based fossil fuels Covers a wide range of combustion application areas, including internal combustion engines, industrial heating, and materials processing Containing both introductory and advanced material on various combustion topics, Principles of Combustion, Third Edition, is an essential textbook for upper-level undergraduate and graduate courses on combustion, combustion theory, and combustion processes. It is also a valuable reference for combustion engineers and scientists wanting to better understand a particular combustion problem.










Experiments and Numerical Simulations of Diluted Spray Turbulent Combustion


Book Description

This book reflects the outcome of the 1st International Workshop on Turbulent Spray Combustion held in 2009 in Corsica (France). The focus is on reporting the progress of experimental and numerical techniques in two-phase flows, with emphasis on spray combustion. The motivation for studies in this area is that knowledge of the dominant phenomena and their interactions in such flow systems is essential for the development of predictive models and their use in combustor and gas turbine design. This necessitates the development of accurate experimental methods and numerical modelling techniques. The workshop aimed at providing an opportunity for experts and young researchers to present the state-of-the-art, discuss new developments or techniques and exchange ideas in the areas of experimentations, modelling and simulation of reactive multiphase flows. The first two papers reflect the contents of the invited lectures, given by experts in the field of turbulent spray combustion. The first concerns computational issues, while the second deals with experiments. These lectures initiated very interesting and interactive discussions among the researchers, further pursued in contributed poster presentations. Contributions 3 and 4 focus on some aspects of the impact of the interaction between fuel evaporation and combustion on spray combustion in the context of gas turbines, while the final article deals with the interaction between evaporation and turbulence.