Nanomaterials and Nanotechnology for Composites


Book Description

Engineered nanopolymer and nanoparticles, with their extraordinary mechanical and unique electronic properties, have garnered much attention in recent years. With a broad range of potential applications, including nanoelectronics, composites, chemical sensors, biosensors, microscopy, nanoelectromechanical systems, and many more, the scientific comm




Nanomaterials and Nanocomposites


Book Description

Nanomaterials are defined as materials in which at least one length dimension is below 100 nanometers. In this size regime, these materials exhibit particular - and tunable - optical, electrical or mechanical properties that are not present at the macro-scale. This opens up the possibility for a plethora of applications at the interface of materials, chemistry, physics and biology, many of which have already entered the commercial realm. When nanomaterials are blended with other materials not necessarily in the nanometer regime, the resulting nanocomposites can exhibit dramatically different properties than the bulk material alone, leading to an enhanced performance in terms of, for example, increased thermal and mechanical stability. This book presents the synthesis, characterization and applications of nanomaterials and nanocomposites, covering zero-dimensional, elemental nanoparticles, one-dimensional materials such as nanorods and nanowhiskers, two-dimensional materials such as graphene and boron nitride as well as three-dimensional materials such as fullerenes, polyhedral oligomers and zeolites, complemented by bio-based nanomaterials, e.g., cellulose, chitin, starch and proteins. Introductory chapters on the state-of-the-art of nanomaterial research and the chemistry and physics in nanoscience and nanotechnology round off the book.




Handbook of Nanomaterials, Volume 2


Book Description

Handbook of Nanomaterials: Biomedicine, Environment, Food, and Agriculture offers a comprehensive resource that introduces the role of nanotechnology and nanomaterials in a broad range of areas, covering fundamentals, methods, and applications.In this volume, dedicated sections focus on key applications across biomedicine, environmental remediation, food, agriculture, and other areas. In each chapter, detailed but concise information is provided on a specific application, and other key state-of-the-art technologies such as biomimetic nanotechnology and nanotechnology in 3D printing are included. In the final part of the book, there is in-depth coverage of environmental and regulatory issues relating to nanotechnology.This book is of interest to researchers and advanced students approaching nanotechnology from a range of disciplines, including materials science and engineering, chemistry, chemical engineering, electronics, energy, biomedicine, environmental science, food science, and agriculture, as well as scientists, engineers, and R&D professionals with an interest in the use of nanomaterials across a range of industries. - Introduces the reader to key applications of nanomaterials - Provides broad, systematic, concise coverage, supporting readers from a range of disciplines - Covers applications across biomedicine, environmental remediation, food, agriculture, and more




Experimental and Numerical Investigation of Advanced Materials and Structures


Book Description

The idea of this monograph is to present the latest results related to experimental and numerical investigations of advanced materials and structures. The contributions cover the field of mechanical, civil and materials engineering, ranging from new modelling and simulation techniques, advanced analysis techniques, optimization of structures and materials and constitutive modelling. Well known experts present their research on damage and fracture of material and structures, materials modelling and evaluation up to image processing and visualization for advanced analyses and evaluation.




Nanomaterials


Book Description

Nanomaterials: Synthesis, Properties and Applications provides a comprehensive introduction to nanomaterials, from how to make them to example properties, processing techniques, and applications. Contributions by leading international researchers and teachers in academic, government, and industrial institutions in nanomaterials provide an accessibl







Nanomaterials for Electrocatalysis


Book Description

Approx.380 pagesApprox.380 pages




Nanomaterials under Extreme Conditions


Book Description

Nanomaterials have supported humankind’s advancement, becoming one of the most important industry sectors, and are expected to rise to the top by 2030. However, significant challenges must be overcome, such as the performance and efficiency of the material under different environmental conditions. This book seeks to promote a critical view on using nanomaterials under extreme conditions found in our body, planet, and outer space. Therefore, nanomaterials are covered from multiple points of view, allowing the reader to get an enriching presentation of current knowledge on nanomaterials, limitations, advancements, and applications under extreme conditions.




Functional Organic and Hybrid Nanostructured Materials


Book Description

The first book to explore the potential of tunable functionalities in organic and hybrid nanostructured materials in a unified manner. The highly experienced editor and a team of leading experts review the promising and enabling aspects of this exciting materials class, covering the design, synthesis and/or fabrication, properties and applications. The broad topical scope includes organic polymers, liquid crystals, gels, stimuli-responsive surfaces, hybrid membranes, metallic, semiconducting and carbon nanomaterials, thermoelectric materials, metal-organic frameworks, luminescent and photochromic materials, and chiral and self-healing materials. For materials scientists, nanotechnologists as well as organic, inorganic, solid state and polymer chemists.




Advanced Computational Nanomechanics


Book Description

Contains the latest research advances in computational nanomechanics in one comprehensive volume Covers computational tools used to simulate and analyse nanostructures Includes contributions from leading researchers Covers of new methodologies/tools applied to computational nanomechanics whilst also giving readers the new findings on carbon-based aggregates (graphene, carbon-nanotubes, nanocomposites) Evaluates the impact of nanoscale phenomena in materials