Studies in Nonlinear Aeroelasticity


Book Description

The great bulk of the literature on aeroelasticity is devoted to linear models. The oretical work relies heavily on linear mathematical concepts, and experimental results are commonly interpreted by assuming that the physical model behaves in a linear manner. Nevertheless, significant work has been done in nonlinear aero elasticity, and one may expect this trend to accelerate for several reasons: our ability to compute has increased at an astonishing rate; as linear concepts have been assimilated widely, there is a natural increase in interest in the foundations of nonlinear modeling; and, finally, some phenomena long recognized to be of interest, but beyond the effective range of linear models, are now known to be essentially nonlinear in nature. In this volume, an exhaustive review of the literature is not attempted. Rather the emphasis is on fundamental ideas and a representative selection of problems. Despite obvious successes in research on problems of aeroelasticity and the existence of a broad literature, including a number of excellent monographs, up to now little attention has been devoted to a general nonlinear theory of interac tion. For the most part nonlinearity has been considered either solely in the description of the behavior of a shell or in the description of the motion of a gas.




Proceedings of the First Symposium on Aviation Maintenance and Management-Volume II


Book Description

Proceedings of the First Symposium on Aviation Maintenance and Management collects selected papers from the conference of ISAMM 2013 in China held in Xi’an on November 25-28, 2013. The book presents state-of-the-art studies on the aviation maintenance, test, fault diagnosis, and prognosis for the aircraft electronic and electrical systems. The selected works can help promote the development of the maintenance and test technology for the aircraft complex systems. Researchers and engineers in the fields of electrical engineering and aerospace engineering can benefit from the book. Jinsong Wang is a professor at School of Mechanical and Electronic Engineering of Northwestern Polytechnical University, China.




A Modern Course in Aeroelasticity


Book Description

Aeroelasticity is the study of flexible structures situated in a flowing fluid. Its modern origins are in the field of aerospace engineering, but it has now expanded to include phenomena arising in other fields such as bioengineering, civil engineering, mechanical engineering and nuclear engineering. The present volume is a teaching text for a first, and possibly second, course in aeroelasticity. It will also be useful as a reference source on the fundamentals of the subject for practitioners. In this third edition, several chapters have been revised and three new chapters added. The latter include a brief introduction to `Experimental Aeroelasticity', an overview of a frontier of research `Nonlinear Aeroelasticity', and the first connected, authoritative account of `Aeroelastic Control' in book form. The authors are drawn from a range of fields including aerospace engineering, civil engineering, mechanical engineering, rotorcraft and turbomachinery. Each author is a leading expert in the subject of his chapter and has many years of experience in consulting, research and teaching.




Introduction to Nonlinear Aeroelasticity


Book Description

Introduces the latest developments and technologies in the area of nonlinear aeroelasticity Nonlinear aeroelasticity has become an increasingly popular research area in recent years. There have been many driving forces behind this development, increasingly flexible structures, nonlinear control laws, materials with nonlinear characteristics, etc. Introduction to Nonlinear Aeroelasticity covers the theoretical basics in nonlinear aeroelasticity and applies the theory to practical problems. As nonlinear aeroelasticity is a combined topic, necessitating expertise from different areas, the book introduces methodologies from a variety of disciplines such as nonlinear dynamics, bifurcation analysis, unsteady aerodynamics, non-smooth systems and others. The emphasis throughout is on the practical application of the theories and methods, so as to enable the reader to apply their newly acquired knowledge. Key features: Covers the major topics in nonlinear aeroelasticity, from the galloping of cables to supersonic panel flutter. Discusses nonlinear dynamics, bifurcation analysis, numerical continuation, unsteady aerodynamics and non-smooth systems. Considers the practical application of the theories and methods. Covers nonlinear dynamics, bifurcation analysis and numerical methods. Accompanied by a website hosting Matlab code. Introduction to Nonlinear Aeroelasticity is a comprehensive reference for researchers and workers in industry and is also a useful introduction to the subject for graduate and undergraduate students across engineering disciplines.







A Modern Course in Aeroelasticity


Book Description

This book is the sixth edition. It is suitable for one or more courses at the advanced undergraduate level and graduate level to cover the field of aeroelasticity. It is also of value to the research scholar and engineering practitioner who wish to understand the state of the art in the field. This book covers the basics of aeroelasticity or the dynamics of fluid–structure interaction. While the field began in response to the rapid development of aviation, it has now expanded into many branches of engineering and scientific disciplines and treats physical phenomena from aerospace engineering, bioengineering, civil engineering, and mechanical engineering in addition to drawing the attention of mathematicians and physicists. The basic questions addressed are dynamic stability and response of fluid structural systems as revealed by both linear and nonlinear mathematical models and correlation with experiment. The use of scaled models and full-scale experiments and tests play a key role where theory is not considered sufficiently reliable.




Nonlinear Systems


Book Description

This book focuses on several key aspects of nonlinear systems including dynamic modeling, state estimation, and stability analysis. It is intended to provide a wide range of readers in applied mathematics and various engineering disciplines an excellent survey of recent studies of nonlinear systems. With its thirteen chapters, the book brings together important contributions from renowned international researchers to provide an excellent survey of recent studies of nonlinear systems. The first section consists of eight chapters that focus on nonlinear dynamic modeling and analysis techniques, while the next section is composed of five chapters that center on state estimation methods and stability analysis for nonlinear systems.




Introduction to Nonlinear Aeroelasticity


Book Description

Introduction to Nonlinear Aeroelasticity Introduces the latest developments and technologies in the area of nonlinear aeroelasticity Nonlinear aeroelasticity has become an increasingly popular research area in recent years. There have been many driving forces behind this development, increasingly flexible structures, nonlinear control laws, materials with nonlinear characteristics and so on. Introduction to Nonlinear Aeroelasticity covers the theoretical basics in nonlinear aeroelasticity and applies the theory to practical problems. As nonlinear aeroelasticity is a combined topic, necessitating expertise from different areas, the book introduces methodologies from a variety of disciplines such as nonlinear dynamics, bifurcation analysis, unsteady aerodynamics, non-smooth systems and others. The emphasis throughout is on the practical application of the theories and methods, so as to enable the reader to apply their newly acquired knowledge Key features: Covers the major topics in nonlinear aeroelasticity, from the galloping of cables to supersonic panel flutter Discusses nonlinear dynamics, bifurcation analysis, numerical continuation, unsteady aerodynamics and non-smooth systems Considers the practical application of the theories and methods Covers nonlinear dynamics, bifurcation analysis and numerical methods Accompanied by a website hosting Matlab code Introduction to Nonlinear Aeroelasticity is a comprehensive reference for researchers and workers in industry and is also a useful introduction to the subject for graduate and undergraduate students across engineering disciplines.




IUTAM Symposium on Integrated Modeling of Fully Coupled Fluid Structure Interactions Using Analysis, Computations and Experiments


Book Description

This plenary paper and the accompanying presentation have highlighted field problems involving fluid-structure interaction over a wide span of Navy operations. Considering the vast size and versatility of the Navy's inventory, the cases presented represent examples of a much larger problem. But even this limited set provides sufficient evidence that fluid-structure interaction does hinder the Navy's ability to accomplish its missions. This survey has also established that there are no accurate and generally applicable design tools for addressing these problems. In the majority of cases the state-of-practice is to either make ad-hoc adjustments and estimates based on historical evidence, or conduct expensive focused tests directed at each specific problem and/or candidate solution. Unfortunately, these approaches do not provide insight into the fundamental problem, and neither can be considered reliable regarding their likelihood of success. So the opportunities for applying computational fluid-structure interaction modeling to Navy problems appear limitless. Scenarios range from the "simple" resonant strumming of underwater and in-air cables, to the "self-contained" flow field and vibration of aircraft/ordnance bodies at various Mach numbers, to violent underwater transient detonations and local hull structural collapse. Generally applicable and computationally tractable design-oriented models for these phenomena are of course still far in the future. But the Navy has taken the first steps in that direction by sponsoring specialized numerical models, validation experiments tailored for specific applications, and conferences such as this one.




Research in Progress


Book Description