Investigation of Solid Fuel Conversion in the Chemical Looping Process


Book Description

Abstract: The high energy density and abundance of coal along with the sustainability of biomass make them favorable fuels for energy production. However, the combustion of carbon-based fuels inevitably results in the production of the greenhouse gas carbon dioxide (CO2). To avert climate change and comply with likely future regulations for greenhouse gas emissions, the CO2 byproduct must be efficiently captured. Unfortunately, existing carbon capture methods result in significant decreases in plant efficiency and significant increases in capital and operating costs. The Coal-Direct Chemical Looping (CDCL) is an energy conversion process for coal/biomass that can separate the CO2 stream in-situ by utilizing iron oxide composite particles as oxygen carriers. Using this method, the iron oxide particles provide crucial oxygen to the coal instead of air, which is the key strategy to the process. The cycling of the iron oxide particles allows for efficient and total carbon capture, therefore ensuring the sustainability and economic viability of carbon-fueled power. Although biomass also produces CO2 upon combustion, it also absorbs CO2 as it is grown. Therefore, biomass can be utilized as a replacement for coal and further improve the sustainability of the process by making it carbon negative. The objective of this study is to investigate the enhancement of char and iron particle conversion with CO2, design a mechanism for particle transfer from the reducer to the combustor, and perform a preliminary assessment of the potential of biomass in the CDCL process. The main obstacle for CDCL is the conversion of coal char because the reaction between the metal oxide and the char is a slow solid-solid reaction. CO2 was found to help gasify the char and significantly increase the rate of reaction. In fact, in the experiments performed in this study, the addition of CO2 increased the amount of char reacted twofold. Furthermore, mixtures between 50% and 70% metal oxide with char were found to increase the char conversion the most compared to other mixtures. These mixtures increased the amount of char reacted 2-5 times, depending on the type of coal used. Ease of coal fluidization was found to be independent of the amount of metal oxide particles; however addition of 80-100% by mass of an inert particle was required in order to fluidize the biomass. A cold model of the reactor was constructed in order to study the gas-solid hydrodynamics and to design the most controllable method of handling solid fuels and oxygen carriers in the system. A design with high resistance and constant flow was selected based on experiments performed on the cold model. The results obtained by this study prove the capabilities of the CDCL process and will allow it to continue towards the scale up to a sub-pilot demonstration.




Chemical Looping Combustion Reactions and Systems


Book Description

Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO2 capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This topical report discusses the results of four complementary efforts: (5.1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (5.2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification; (5.3) the exploration of operating characteristics in the laboratoryscale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability; and (5.4) the identification of kinetic data for copper-based oxygen carriers as well as the development and analysis of supported copper oxygen carrier material. Subtask 5.1 focused on the development of kinetic expressions for the Chemical Looping with Oxygen Uncoupling (CLOU) process and validating them with reported literature data. The kinetic expressions were incorporated into a process model for determination of reactor size and oxygen carrier circulation for the CLOU process using ASPEN PLUS. An ASPEN PLUS process model was also developed using literature data for the CLC process employing an iron-based oxygen carrier, and the results of the process model have been utilized to perform a relative economic comparison. In Subtask 5.2, the investigators studied the trade-off between modeling approaches and available simulations tools. They quantified uncertainty in the high-performance computing (HPC) simulation tools for CLC bed applications. Furthermore, they performed a sensitivity analysis for velocity, height and polydispersity and compared results against literature data for experimental studies of CLC beds with no reaction. Finally, they present an optimization space using simple non-reactive configurations. In Subtask 5.3, through a series of experimental studies, behavior of a variety of oxygen carriers with different loadings and manufacturing techniques was evaluated under both oxidizing and reducing conditions. The influences of temperature, degree of carrier conversion and thermodynamic driving force resulting from the difference between equilibrium and system O2 partial pressures were evaluated through several experimental campaigns, and generalized models accounting for these influences were developed to describe oxidation and oxygen release. Conversion of three solid fuels with widely ranging reactivities was studied in a small fluidized bed system, and all but the least reactive fuel (petcoke) were rapidly converted by oxygen liberated from the CLOU carrier. Attrition propensity of a variety of carriers was also studied, and the carriers produced by freeze granulation or impregnation of preformed substrates displayed the lowest rates of attrition. Subtask 5.4 focused on gathering kinetic data for a copper-based oxygen carrier to assist with modeling of a functioning chemical looping reactor. The kinetics team was also responsible for the development and analysis of supported copper oxygen carrier material.




Handbook of Chemical Looping Technology


Book Description

This comprehensive and up-to-date handbook on this highly topical field, covering everything from new process concepts to commercial applications. Describing novel developments as well as established methods, the authors start with the evaluation of different oxygen carriers and subsequently illuminate various technological concepts for the energy conversion process. They then go on to discuss the potential for commercial applications in gaseous, coal, and fuel combustion processes in industry. The result is an invaluable source for every scientist in the field, from inorganic chemists in academia to chemical engineers in industry.




Proceedings of the 20th International Conference on Fluidized Bed Combustion


Book Description

The proceedings of the 20th International Conference on Fluidized Bed Combustion (FBC) collect 9 plenary lectures and 175 peer-reviewed technical papers presented in the conference held in Xi'an China in May 18-21,2009. The conference was the 20th conference in a series, covering the latest fundamental research results, as well as the application experience from pilot plants, demonstrations and industrial units regarding to the FBC science and technology. It was co-hosted by Tsinghua University, Southeast University, Zhejiang University, China Electricity Council and Chinese Machinery Industry Federation. A particular feature of the proceedings is the balance between the papers submitted by experts from industry and the papers submitted by academic researchers, aiming to bring academic knowledge to application as well as to define new areas for research. The authors of the proceedings are the most active researchers, technology developers, experienced and representative facility operators and manufacturers. They presented the latest research results, state-of-the-art development and projects, and the useful experience. The proceedings are divided into following sections: • CFB Boiler Technology, Operation and Design • Fundamental Research on Fluidization and Fluidized Combustion • C02 Capture and Chemical Looping • Gasification • Modeling and Simulation on FBC Technology • Environments and Pollutant Control • Sustainable Fuels The proceedings can be served as idea references for researchers, engineers, academia and graduate students, plant operators, boiler manufacturers, component suppliers, and technical managers who work on FBC fundamental research, technology development and industrial application.




Chemical Looping Combustion of Victorian Brown Coal Using Fe-based Oxygen Carriers


Book Description

The vast reserves of Victorian brown coal (VBC), over 400 years at the current rate of consumption, is predominantly used for power generation with over 80% of Victoria's electricity generated from the combustion of this fuel. This results in the emission of vast amounts of greenhouse gases such as CO2. Hence, it is important to investigate carbon dioxide capture and storage technologies for use in power stations employing fossil fuels. Chemical Looping Combustion (CLC) is an emerging CO2 capture technology which is capable of inherently capturing CO2. In CLC, the Oxygen Carrier (OC) provides the oxygen for the combustion of the fuel hence eliminating dilution with N2 from air. Once the oxygen in the OC is depleted, it is regenerated through oxidation in air and is then sent back to react with another batch of fuel. The vast majority of research in the field of CLC has been focussed on gaseous fuels such as natural gas and syngas due to the simplicity of such a process. In recent times, there has been a shift towards the use of solid fuels due to their abundance, widespread availability and lower cost. As such, there are a number of gaps in the field of CLC employing solid fuels; additionally, the only information relating to CLC of VBC is limited to experiments using small scale laboratory equipment. This thesis serves to fill some of the gaps in the field of VBC-fuelled CLC. The first study investigated the effect of inherent coal minerals on the performance of a CLC system; a high ash Canadian lignite was also used as part of this comparative study. The results highlighted that the low ash VBC was more suitable for use as a fuel in CLC as it was highly reactive and its low ash content led to a smaller amount of ash deposition on the OC. The second study involved using synchrotron radiation to perform in-situ X-ray Diffraction studies of a VBC-fuelled CLC process to understand both the changes that the OC undergoes as part of the redox reaction as well as carbon deposition on the OC. The results showed that the reduction of Fe2O3 beyond Fe3O4 was not favourable over long periods of time when using CO2 as the gasification agent as it led to carbon deposition on the OC. The third study is a first-of-its-kind investigation, where the reduction kinetics of an Fe-based OC was determined in the presence of a char derived from VBC. The Shrinking Core Model (SCM) and the Modified Volume Reaction Model (MVRM) were used to model the reduction of the OC. The results showed that both models were capable of predicting the reduction of Fe2O3 in the presence of a solid fuel. The calculations also verified that the rate limiting step in CLC was that of char gasification. The fourth study investigated the effect of the reactor configuration on the performance of the CLC system as such a comparison has never been attempted. A fluidized bed reactor, an atmospheric fixed bed reactor and a pressurized fixed bed reactor operated at 5 bar were used. The amount of the fuel and the OC together with the flow rates of the gases were kept constant so that the results from the different setups could be compared accurately. It was found that using the fluidized bed reactor allowed for the fastest gasification of the fuel due to better contact between the gasification agent and fuel. Although the CO2 yield and carbon conversion in the fluidized bed reactor was lower compared to the other two fixed bed reactors, it is expected that the use of a circulating fluidized bed (CFB) reactor with cyclones, a carbon stripper and a taller expanded freeboard would improve these two parameters. The fifth study involved fabricating and trialling 18 synthetic OCs in which NiO, CuO and Mn2O3 were supported on Fe2O3. This was done as most studies in literature utilize an inert support that is not able to take part in the redox reaction; as such a greater quantity of the OC is needed to provide the necessary oxygen. The results highlight that impregnated OCs were more reactive relative to their physically mixed counterparts. The use of high levels of CuO should be avoided as it led to the defluidization of the bed. Although NiO performed well, it may not be suitable for use due to its toxicity. Taking numerous considerations into account, the use of Mn2O3 was recommended as it led to a synergistic effect with Fe2O3. The sixth and final study of this thesis utilized a 10 kWth alternating fluidized bed reactor to trial the performance of VBC in a large scale reactor. A number of studies on the effects of temperature, fuel type, OC particle size range and long term operation on the performance of the CLC system were done. The NOx emissions were quantified and a carbon balance was also performed. The NOx emissions were found to average around 25 ppm over the course of the reduction reaction. Based on the carbon balance, 6.8% of the introduced carbon was unaccounted for due to the low capture efficiency of the cyclones. The optimum parameters were found to be 900°C for the temperature, 150-350 μm for the OC particle size range and VBC for the fuel. The average carbon conversion and CO2 yield over 35 reduction reactions was found to be 86% and 81% respectively for the conditions optimized for this reactor setup. These studies show that the use of Fe-based OCs is highly promising with VBC. The main recommendation from this thesis is the use of VBC in a CFB reactor as this is expected to significantly improve the carbon conversion and CO2 yield.




Pollutants Generated by the Combustion of Solid Biomass Fuels


Book Description

This book considers the pollutants formed by the combustion of solid biomass fuels. The availability and potential use of solid biofuels is first discussed because this is the key to the development of biomass as a source of energy. This is followed by details of the methods used for characterisation of biomass and their classification. The various steps in the combustion mechanisms are given together with a compilation of the kinetic data. The chemical mechanisms for the formation of the pollutants: NOx, smoke and unburned hydrocarbons, SOx, Cl compounds, and particulate metal aerosols are given in detail. Combustion kinetics required for the application for design purposes are given. Examples are given of emission levels of a range different types of combustion equipment. Data is given of NOx, particulates and other pollutant arising from combustion of different fuels in fixed bed combustion, fluidized bed combustion and pulverised biomass combustion and co-firing. Modeling methods including computational fluid dynamics for the various pollutants are outlined. The consequential issues arising from the wide scale use of biomass and future trends are then discussed. In particular the role of carbon capture and storage in large biomass combustion plants is considered as well as the opportunity of reducing the concentration of atmospheric concentration of carbon dioxide.




Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification


Book Description

Fluidized bed (FB) combustion and gasification are advanced techniques for fuel flexible, high efficiency and low emission conversion. Fuels are combusted or gasified as a fluidized bed suspended by jets with sorbents that remove harmful emissions such as SOx. CO2 capture can also be incorporated. Fluidized bed technologies for near-zero emission combustion and gasification provides an overview of established FB technologies while also detailing recent developments in the field.Part one, an introductory section, reviews fluidization science and FB technologies and includes chapters on particle characterization and behaviour, properties of stationary and circulating fluidized beds, heat and mass transfer and attrition in FB combustion and gasification systems. Part two expands on this introduction to explore the fundamentals of FB combustion and gasification including the conversion of solid, liquid and gaseous fuels, pollutant emission and reactor design and scale up. Part three highlights recent advances in a variety of FB combustion and gasification technologies before part four moves on to focus on emerging CO2 capture technologies. Finally, part five explores other applications of FB technology including (FB) petroleum refining and chemical production.Fluidized bed technologies for near-zero emission combustion and gasification is a technical resource for power plant operators, industrial engineers working with fluidized bed combustion and gasification systems and researchers, scientists and academics in the field. - Examines the fundamentals of fluidized bed (FB) technologies, including the conversion of solid, liquid and gaseous fuels - Explores recent advances in a variety of technologies such as pressurized FB combustion, and the measurement, monitoring and control of FB combustion and gasification - Discusses emerging technologies and examines applications of FB in other processes




Solid Fuels Combustion and Gasification


Book Description

Bridging the gap between theory and application, this reference demonstrates the operational mechanisms, modeling, and simulation of equipment for the combustion and gasification of solid fuels. Solid Fuels Combustion and Gasification: Modeling, Simulation, and Equipment Operation clearly illustrates procedures to improve and optimize the de




Development of Chemical Looping Combustion Technology for Energy Application - Process Modeling, Experimental Aspect, and Exergy Analysis


Book Description

With the rising concern of climate change, extensive research has been conducted in recent years on the mitigation of global warming. Greenhouse gas emissions are considered as the key driver of global warming. Among the various greenhouse gases, CO2 is the major contributor to the greenhouse effect. Therefore, mitigation of CO2 emission is the key to address global warming. Chemical looping is an energy conversion technology that can directly produce a concentrated CO2 stream, ready for sequestration and utilization, without the need for an individual CO2 separation step, and thus, has the potential to drastically reduce the energy consumption and cost associated with CO2 capture in carbonaceous fuel energy conversion systems. In this dissertation, process modeling and analysis are conducted on solid fuel power production processes to quantify the energy penalty and exergy losses associated with CO2 capture technologies, including state-of-the-art solvent-based CO2 absorption, oxy-combustion using high purity oxygen, and chemical looping combustion technology. Following the comparison of various power production processes using solid fuel with and without CO2 capture, a comprehensive analysis is performed to investigate the effect of varying operation conditions on the performance of chemical looping combustion reactor system. The coal-direct chemical looping process is a chemical looping combustion technology using moving bed reducer configuration that can directly use coal as the feedstock without requiring upstream gasification steps. An integrated 250 kWth coal-direct chemical looping pilot unit using iron-based oxygen carriers has been constructed and demonstrated for long-term continuous operations. The principles for the design and operation of the primary reactor system are discussed in this dissertation. The results of a successful 288-hour continuous demonstration with pulverized bituminous coal are reported. The results from the pilot unit highlight the concept of the chemical looping combustion process as a promising solid fuel combustion technology with CO2 capture. To investigate chemical looping technology for hydrogen production, process simulation and analysis is performed on two distinct configurations for chemical looping H2 generation process. The simulation results of two chemical looping H2 generation configurations are compared with the conventional steam-methane reforming system to underscore the attractiveness of the chemical looping configurations.