Experimental Mechanics of Solids


Book Description

Experimental solid mechanics is the study of materials to determine their physical properties. This study might include performing a stress analysis or measuring the extent of displacement, shape, strain and stress which a material suffers under controlled conditions. In the last few years there have been remarkable developments in experimental techniques that measure shape, displacement and strains and these sorts of experiments are increasingly conducted using computational techniques. Experimental Mechanics of Solids is a comprehensive introduction to the topics, technologies and methods of experimental mechanics of solids. It begins by establishing the fundamentals of continuum mechanics, explaining key areas such as the equations used, stresses and strains, and two and three dimensional problems. Having laid down the foundations of the topic, the book then moves on to look at specific techniques and technologies with emphasis on the most recent developments such as optics and image processing. Most of the current computational methods, as well as practical ones, are included to ensure that the book provides information essential to the reader in practical or research applications. Key features: Presents widely used and accepted methodologies that are based on research and development work of the lead author Systematically works through the topics and theories of experimental mechanics including detailed treatments of the Moire, Speckle and holographic optical methods Includes illustrations and diagrams to illuminate the topic clearly for the reader Provides a comprehensive introduction to the topic, and also acts as a quick reference guide This comprehensive book forms an invaluable resource for graduate students and is also a point of reference for researchers and practitioners in structural and materials engineering.




Advances in Experimental Impact Mechanics


Book Description

Summarizing the latest advances in experimental impact mechanics, this book provides cutting-edge techniques and methods for designing, executing, analyzing, and interpreting the results of experiments involving the dynamic responses of materials and structures. It provides tailored guidelines and solutions for specific applications and materials, covering topics such as dynamic characterization of metallic materials, fiber-like materials, low-impedance materials, concrete and more. Damage evolution and constitutive behavior of materials under impact loading, one-dimensional strain loading, intermediate and high strain rates, and other environmental conditions are discussed, as are techniques using high temperature testing and miniature Kolsky bars. Provides cutting-edge techniques and methods for designing, executing, analyzing, and interpreting the results of experimental impact mechanics Covers experimental guidelines and solutions for an array of different materials, conditions, and applications Enables readers to quickly design and perform their own experiments and properly interpret the results Looks at application-specific post-test analysis




Experimental Mechanics


Book Description




Experimental Solid Mechanics


Book Description

The text is intended for upper-division undergraduate students or graduate students beginning to study experimental methods. The book reflects many of the changes in experimental mechanics that have occurred during the past decade. A significant amount of new content has been added by expanding existing chapters.




Experimental Mechanics


Book Description

The book presents in a clear, simple, straightforward, novel and unified manner the most used methods of experimental mechanics of solids for the determination of displacements, strains and stresses. Emphasis is given on the principles of operation of the various methods, not in their applications to engineering problems. The book is divided into sixteen chapters which include strain gages, basic optics, geometric and interferometric moiré, optical methods (photoelasticity, interferometry, holography, caustics, speckle methods, digital image correlation), thermoelastic stress analysis, indentation, optical fibers, nondestructive testing, and residual stresses. The book will be used not only as a learning tool, but as a basis on which the researcher, the engineer, the experimentalist, the student can develop their new own ideas to promote research in experimental mechanics of solids.




Springer Handbook of Experimental Fluid Mechanics


Book Description

Accompanying DVD-ROM contains ... "all chapters of the Springer Handbook."--Page 3 of cover.




Springer Handbook of Experimental Solid Mechanics


Book Description

The Springer Handbook of Experimental Solid Mechanics documents both the traditional techniques as well as the new methods for experimental studies of materials, components, and structures. The emergence of new materials and new disciplines, together with the escalating use of on- and off-line computers for rapid data processing and the combined use of experimental and numerical techniques have greatly expanded the capabilities of experimental mechanics. New exciting topics are included on biological materials, MEMS and NEMS, nanoindentation, digital photomechanics, photoacoustic characterization, and atomic force microscopy in experimental solid mechanics. Presenting complete instructions to various areas of experimental solid mechanics, guidance to detailed expositions in important references, and a description of state-of-the-art applications in important technical areas, this thoroughly revised and updated edition is an excellent reference to a widespread academic, industrial, and professional engineering audience.




Recent Advances in Experimental Mechanics


Book Description

This book contains 71 papers presented at the symposium on “Recent Advances in Experimental Mechanics” which was organized in honor of Professor Isaac M. Daniel. The symposium took place at Virginia Polytechnic Institute and State University on th June 23-28, 2002, in conjunction with the 14 US National Congress of Applied Mechanics. The book is a tribute to Isaac Daniel, a pioneer of experimental mechanics and composite materials, in recognition of his continuous, original, diversified and outstanding contributions for half a century. The book consists of invited papers written by leading experts in the field. It contains original contributions concerning the latest developments in experimental mechanics. It covers a wide range of subjects, including optical methods of stress analysis (photoelasticity, moiré, etc.), composite materials, sandwich construction, fracture mechanics, fatigue and damage, nondestructive evaluation, dynamic problems, fiber optic sensors, speckle metrology, digital image processing, nanotechnology, neutron diffraction and synchrotron radiation methods. The papers are arranged in the following nine sections: Mechanical characterization of material behavior, composite materials, fracture and fatigue, optical methods, n- destructive evaluation, neutron diffraction and synchrotron radiation methods, hybrid methods, composite structures, and structural testing and analysis.




Experimental Mechanics of Solids and Structures


Book Description

From the characterization of materials to accelerated life testing, experimentation with solids and structures is present in all stages of the design of mechanical devices. Sometimes only an experimental model can bring the necessary elements for understanding, the physics under study just being too complex for an efficient numerical model. This book presents the classical tools in the experimental approach to mechanical engineering, as well as the methods that have revolutionized the field over the past 20 years: photomechanics, signal processing, statistical data analysis, design of experiments, uncertainty analysis, etc. Experimental Mechanics of Solids and Structures also replaces mechanical testing in a larger context: firstly, that of the experimental model, with its own hypotheses; then that of the knowledge acquisition process, which is structured and robust; finally, that of a reliable analysis of the results obtained, in a context where uncertainty could be important.




Advancement of Optical Methods in Experimental Mechanics, Volume 3


Book Description

Advancement of Optical Methods in Experimental Mechanics, Volume 3 of the Proceedings of the 2016 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the third volume of ten from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of optical methods ranging from traditional photoelasticity and interferometry to more recent DIC and DVC techniques, and includes papers in the following general technical research areas: Advances in Digital Image Correlation Challenging Applications of DIC Uncertainty Analysis & Improvements to DIC Accuracy Photoelasticity, Interferometry, & Moire Methods Applications of Stereovision Inverse Methods at High Strain Rates Inverse Methods in Plasticity