Experimental Methods in Kinetic Studies


Book Description

This book is a guide to kinetic studies of reaction mechanisms. It reviews conventional reactor types and data collection methods, and introduces a new methodology for data collection using Temperature Scanning Reactors (TSR). It provides a theoretical and practical approach to temperature scanning (TS) methodology and supports a revival of kinetic studies as a useful approach to the fundamental understanding of chemical reaction mechanisms and the consequential reaction kinetics.·Describes a new patented technology·Of interest to industrial and academic researchers in the fields of kinetics and catalysis·No existing competitor for this title




Chemical Kinetics and Dynamics


Book Description

This text presents a balanced presentation of the macroscopic view of empirical kinetics and the microscopic molecular viewpoint of chemical dynamics. This second edition includes the latest information, as well as new topics such as heterogeneous reactions in atmospheric chemistry, reactant product imaging, and molecular dynamics of H + H2.




An Introduction to Chemical Kinetics


Book Description

The book is a short primer on chemical reaction rates based on a six-lecture first-year undergraduate course taught by the author at the University of Oxford. The book explores the various factors that determine how fast or slowly a chemical reaction proceeds and describes a variety of experimental methods for measuring reaction rates. The link between the reaction rate and the sequence of steps that makes up the reaction mechanism is also investigated. Chemical reaction rates is a core topic in all undergraduate chemistry courses.




Materials Science in Photocatalysis


Book Description

Materials Science in Photocatalysis provides a complete overview of the different semiconductor materials, from titania to third-generation photocatalysts, examining the increasing complexity and novelty of the materials science in photocatalytic materials. The book describes the most recommended synthesis procedure for each of them and the suitable characterization techniques for determining the optical, structural, morphological, and physical-chemical properties. The most suitable applications of the photocatalysts are described in detail, as well as their environmental applications for wastewater treatment, gaseous effluents depollution, water splitting, CO2 ?xation, selective organic synthesis, coupling reactions, and other selective transformations under both UV light and visible-light irradiation. This book offers a useful reference for a wide audience from students studying chemical engineering and materials chemistry to experienced researchers working on chemical engineering, materials science, materials engineering, environment engineering, nanotechnology, and green chemistry. Includes a complete overview of the different semiconductor materials used as photocatalysts Describes methods of preparation and characterization of photocatalysts and their applications Examines new possibilities to prepare effective photocatalysts




Kinetic Data Analysis


Book Description

Kinetic models have often served as useful examples in develop ing the methodology for the design and analysis of experiments in volving mechanistic models. Thus, it is not surprising that these approaches have been applied quite successfully to kinetic obser vations. Nevertheless, many ideas and methods were developed indepen dently in various fields of science. More often than not, investi gators working in one area have not been aware of relevant advances in others. In order to facilitate the desirable exchange of ideas, a one-day symposium was held in Toronto in conjunction with the XIth International Congress of Biochemistry. Biochemists, pharmacolo gists,> and statisticians came together and discussed many of the topics presented in this volume. Participants in the symposium believed that it would be use ful to publish a collection of the presentations together with some additional material. The present volume is the result. It is an attempt to convey some of the interdisciplinary concerns involv ing mechanistic, and especially kinetic, model building. The coverage is by no means exhaustive: many principles, methods, and problems are not included. Even the applications are limited to biochemistry and pharmacology. Still, the symposium highlighted areas of current interest. These included questions of weighting, robust parameter estimation, pooled data analysis, model identification, and the design of experiments. These topics, which are of interest in many fields of science, are discus3ed also in the present volume.




Experimental Methods for Evaluation of Hydrotreating Catalysts


Book Description

Presents detailed information and study cases on experiments on hydrotreating catalysts for the petroleum industry Catalytic hydrotreating (HDT) is a process used in the petroleum refining industry for upgrading hydrocarbon streams—removing impurities, eliminating metals, converting asphaltene molecules, and hydrocracking heavy fractions. The major applications of HDT in refinery operations include feed pretreatment for conversion processes, post-hydrotreating distillates, and upgrading heavy crude oils. Designing HDT processes and catalysts for successful commercial application requires experimental studies based on appropriate methodologies. Experimental Methods for Evaluation of Hydrotreating Catalysts provides detailed descriptions of experiments in different reaction scales for studying the hydrotreating of various petroleum distillates. Emphasizing step-by-step methodologies in each level of experimentation, this comprehensive volume presents numerous examples of evaluation methods, operating conditions, reactor and catalyst types, and process configurations. In-depth chapters describe experimental setup and procedure, analytical methods, calculations, testing and characterization of catalyst and liquid products, and interpretation of experiment data and results. The text describes experimental procedure at different levels of experimentation—glass reactor, batch reactor, continuous stirred tank reactor, and multiple scales of tubular reactors—using model compounds, middle distillates and heavy oil. This authoritative volume: Introduces experimental setups used for conducting research studies, such as type of operation, selection of reactor, and analysis of products Features examples focused on the evaluation of different reaction parameters and catalysts with a variety of petroleum feedstocks Provides experimental data collected from different reaction scales Includes experiments for determining mass transfer limitations and deviation from ideality of flow pattern Presents contributions from leading scientists and researchers in the field of petroleum refining Experimental Methods for Evaluation of Hydrotreating Catalysts is an indispensable reference for researchers and professionals working in the area of catalytic hydrotreating, as well as an ideal textbook for courses in fields such as chemical engineering, petrochemical engineering, and biotechnology.




Encyclopedia of Chemical Physics and Physical Chemistry


Book Description

The Encyclopedia of Physical Chemistry and Chemical Physics introduces possibly unfamiliar areas, explains important experimental and computational techniques, and describes modern endeavors. The encyclopedia quickly provides the basics, defines the scope of each subdiscipline, and indicates where to go for a more complete and detailed explanation. Particular attention has been paid to symbols and abbreviations to make this a user-friendly encyclopedia. Care has been taken to ensure that the reading level is suitable for the trained chemist or physicist. The encyclopedia is divided in three major sections: FUNDAMENTALS: the mechanics of atoms and molecules and their interactions, the macroscopic and statistical description of systems at equilibrium, and the basic ways of treating reacting systems. The contributions in this section assume a somewhat less sophisticated audience than the two subsequent sections. At least a portion of each article inevitably covers material that might also be found in a modern, undergraduate physical chemistry text. METHODS: the instrumentation and fundamental theory employed in the major spectroscopic techniques, the experimental means for characterizing materials, the instrumentation and basic theory employed in the study of chemical kinetics, and the computational techniques used to predict the static and dynamic properties of materials. APPLICATIONS: specific topics of current interest and intensive research. For the practicing physicist or chemist, this encyclopedia is the place to start when confronted with a new problem or when the techniques of an unfamiliar area might be exploited. For a graduate student in chemistry or physics, the encyclopedia gives a synopsis of the basics and an overview of the range of activities in which physical principles are applied to chemical problems. It will lead any of these groups to the salient points of a new field as rapidly as possible and gives pointers as to where to read about the topic in more detail.




Research in Chemical Kinetics


Book Description

Research in Chemical Kinetics, Volume 1 focuses on authoritative review articles on a wide range of developing topics in the kinetics of gaseous and condensed phases. The selection first elaborates on gas-phase kinetics of free radicals studied by pulse radiolysis combined with time-resolved infrared diode laser spectroscopy and solid/liquid reactions of environmental significance. Discussions focus on coprecipitation of phosphate with calcite, reactions of silica and quartz, infrared spectroscopy of free radicals, and kinetics of methyl radicals. The book then examines the collision energy dependence of reaction cross sections and photoelectrochemical dynamics, including organometallic photoelectrochemistry and photofragmentation voltammetry, contrasting reactivity of ion radical excited states, photoelectrochemical reaction mechanisms, and experimental methods. The publication tackles collisional electronic energy transfer in CN free radicals, photo-ion imaging techniques and future directions in reactive scattering, and photoelectrochemical dynamics. Topics include photoelectrochemical reaction mechanisms, photoelectrochemical measurement of quantum yields, photofragment translational spectroscopy, and velocity distributions. The selection is a valuable reference for researchers interested in the kinetics of gaseous and condensed phases.




Advanced Data Analysis and Modelling in Chemical Engineering


Book Description

Advanced Data Analysis and Modeling in Chemical Engineering provides the mathematical foundations of different areas of chemical engineering and describes typical applications. The book presents the key areas of chemical engineering, their mathematical foundations, and corresponding modeling techniques. Modern industrial production is based on solid scientific methods, many of which are part of chemical engineering. To produce new substances or materials, engineers must devise special reactors and procedures, while also observing stringent safety requirements and striving to optimize the efficiency jointly in economic and ecological terms. In chemical engineering, mathematical methods are considered to be driving forces of many innovations in material design and process development. - Presents the main mathematical problems and models of chemical engineering and provides the reader with contemporary methods and tools to solve them - Summarizes in a clear and straightforward way, the contemporary trends in the interaction between mathematics and chemical engineering vital to chemical engineers in their daily work - Includes classical analytical methods, computational methods, and methods of symbolic computation - Covers the latest cutting edge computational methods, like symbolic computational methods




Catalytic Kinetics


Book Description

Chemistry and chemical technology have been at the heart of the revolutionary developments of the 20th century. The chemical industry has a long history of combining theory (science) and practice (engineering) to create new and useful products. Worldwide, the process industry (which includes chemicals, petrochemicals, petroleum refining, and pharmaceuticals) is a huge, complex, and interconnected global business with an annual production value exceeding 4 trillion dollars. Although in industry special focus is in heterogeneous catalysis, homogeneous, enzymatic, photochemical and electrochemical catalysis should not be overlooked; as the major aim is to produce certain chemicals in the best possible way, applying those types of catalysis, which suit a particular process in the most optimal way. Catalysis according to the very definition of it deals with enhancement of reaction rates, that is, with catalytic kinetics. This book unifies the main sub disciplines forming the cornerstone of catalytic kinetics.* Provides a broad overview catalytic kinetics* Bridges the gaps that exist between hetero-, homo- and bio-catalysis* Written by internationally renowned experts in this field