Experimental Neutron Scattering


Book Description

The first systematic experiments in neutron scattering were carried out in the late 1940s using fission reactors built for the nuclear power programme. Crystallographers were amongst the first to exploit the new technique, but they were soon followed by condensed matter physicists and chemists. Engineers and biologists are the most recent recruits to the club of neutron users. The aim of the book is to provide a broad survey of the experimental activities of all these users. There are many specialist monographs describing particular examples of the application of neutron scattering: fifteen of such monographs have been published already in the Oxford University Press series edited by S. Lovesey and E. Mitchell. However this book will appeal to newcomers to the field of neutron scattering, who may be intimidated by the bewildering array of instruments at central facilities (such as the Institut Laue Langevin in France, the ISIS Laboratory in the UK, or the PSI Laboratory in Switzerland), and who may be uncertain as to which instrument to use.




Experimental Neutron Scattering


Book Description

This book provides a broad survey of the work carried out by scientists at neutron centres around the world, which provide the facilities for generating intense beams of neutrons.These beams are essential in investigating the atomic structures of a wide range of materials such as magnetic alloys, superconductors, polymers, or proteins.




Experimental Neutron Scattering


Book Description

This text provides a broad survey of the work carried out by scientists at neutron centres around the world, which provide the facilities for generating intense beams of neutrons.




Principles of Neutron Scattering from Condensed Matter


Book Description

Neutron scattering is arguably the most powerful technique available for looking inside materials and seeing what the atoms are doing. This textbook provides a comprehensive and up-to-date account of the many different ways neutrons are being used to investigate the behaviour of atoms and molecules in bulk matter. It is written in a pedagogical style, and includes many examples and exercises. Every year, thousands of experiments are performed at neutron scattering facilities around the world, exploring phenomena in physics, chemistry, materials science, as well as in interdisciplinary areas such as biology, materials engineering, and cultural heritage. This book fulfils a need for a modern and pedagogical treatment of the principles behind the various different neutron techniques, in order to provide scientists with the essential formal tools to design their experiments and interpret the results. The book will be of particular interest to researchers using neutrons to study the atomic-scale structure and dynamics in crystalline solids, simple liquids and molecular fluids by diffraction techniques, including small-angle scattering and reflectometry, and by spectroscopic methods, ranging from conventional techniques for inelastic and quasielastic scattering to neutron spin-echo and Compton scattering. A comprehensive treatment of magnetic neutron scattering is given, including the many and diverse applications of polarized neutrons.




Soft-Matter Characterization


Book Description

This 2-volume set includes extensive discussions of scattering techniques (light, neutron and X-ray) and related fluctuation and grating techniques that are at the forefront of this field. Most of the scattering techniques are Fourier space techniques. Recent advances have seen the development of powerful direct imaging methods such as atomic force microscopy and scanning probe microscopy. In addition, techniques that can be used to manipulate soft matter on the nanometer scale are also in rapid development. These include the scanning probe microscopy technique mentioned above as well as optical and magnetic tweezers.




Neutron Scattering from Magnetic Materials


Book Description

Neutron Scattering from Magnetic Materials is a comprehensive account of the present state of the art in the use of the neutron scattering for the study of magnetic materials. The chapters have been written by well-known researchers who are at the forefront of this field and have contributed directly to the development of the techniques described. Neutron scattering probes magnetic phenomena directly. The generalized magnetic susceptibility, which can be expressed as a function of wave vector and energy, contains all the information there is to know about the statics and dynamics of a magnetic system and this quantity is directly related to the neutron scattering cross section. Polarized neutron scattering techniques raise the sophistication of measurements to even greater levels and gives additional information in many cases. The present book is largely devoted to the application of polarized neutron scattering to the study of magnetic materials. It will be of particular interest to graduate students and researchers who plan to investigate magnetic materials using neutron scattering.· Written by a group of scientist who have contributed directly in developing the techniques described.· A complete treatment of the polarized neutron scattering not available in literature.· Gives practical hits to solve magnetic structure and determine exchange interactions in magnetic solids.· Application of neutron scattering to the study of the novel electronic materials.




Introduction to the Theory of Thermal Neutron Scattering


Book Description

A long-awaited reprint of the book that has established itself as the classic textbook on neutron scattering. It will be an invaluable introductory text for students taking courses on neutron scattering, as well as for researchers and those who would like to deepen their knowledge on the subject through self-study.




Experimental neutron resonance spectroscopy


Book Description

Experimental Neutron Resonance Spectroscopy deals with the experimental technique of neutron resonance spectroscopy. Pulsed accelerator time-of-flight spectrometers and gamma rays from neutron capture in resonances are discussed. Total neutron cross section measurements are presented, along with neutron scattering and capture cross-section measurements and measurements on fissile nuclides. This book is comprised of five chapters and begins with an introduction to pulsed accelerator time-of-flight spectrometers with moderated continued neutron spectra, together with the pulsed Van De Graaff. Experimental techniques used for neutron cross section measurements, including detectors and data acquisition equipment, are then outlined. Scattering measurements and capture measurements as well as gamma-ray spectra from the capture of neutrons in resonances are considered. The final chapter focuses on the detailed and varied experiments that have been performed on the complicated fission process, together with the parameters of the resonances of the fissile nuclides. This monograph will be a useful resource for spectroscopists and physicists.




Magnetic Small-Angle Neutron Scattering


Book Description

Magnetic Small-Angle Neutron Scattering provides the first extensive treatment of magnetic small-angle neutron scattering (SANS). The theoretical background required to compute magnetic SANS cross sections and correlation functions related to long-wavelength magnetization structures is laidout. The concepts are scrutinized based on the discussion of experimental neutron data. Regarding prior background knowledge, some familiarity with the basic magnetic interactions and phenomena as well as scattering theory is desired.Besides exposing the different origins of magnetic SANS, and furnishing the basics of the magnetic SANS technique in early chapters, a large part of the book is devoted to a comprehensive treatment of the continuum theory of micromagnetics, as it is relevant for the study of the elastic magneticSANS cross section. Analytical expressions for the magnetization Fourier components allow to highlight the essential features of magnetic SANS and to analyze experimental data both in reciprocal, as well as in real space. Later chapters provide an overview on the magnetic SANS of nanoparticles andso-called complex systems (e.g., ferrofluids, magnetic steels, spin glasses and amorphous magnets). It is this subfield where major progress is expected to be made in the coming years, mainly via the increased usage of numerical micromagnetic simulations (Chapter 7), which is a very promisingapproach for the understanding of the magnetic SANS from systems exhibiting nanoscale spin inhomogeneity.




A Practical Guide to Quasi-elastic Neutron Scattering


Book Description

This title provides an accessible introduction to quasi-elastic neutron scattering (QENS), highlighting all key conceptual, theoretical and data interpretation aspects of the method.