Experimental Study of an Underactuated Manipulator


Book Description

Abstract: "Underactuated manipulators are a class of robotic mechanisms where passive joints are present. By controlling only the motion of the active joints, it is possible to control the entire system. Our goal is to develop control schemes using both classical nonlinear and modern learning techniques for underactuated manipulators. To examine the validity of the approaches, we developed an experimental setup known as U- ARM, or UnderActuated Robot Manipulator. In this report, we present the hardware development, dynamic parameters derivation, control software and experimental results of real-time control of U-ARM."




Experimental Study of an Underactuated Manipulator


Book Description

Abstract: "Underactuated manipulators are a class of robotic mechanisms where passive joints are present. By controlling only the motion of the active joints, it is possible to control the entire system. Our goal is to develop control schemes using both classical nonlinear and modern learning techniques for underactuated manipulators. To examine the validity of the approaches, we developed an experimental setup known as U- ARM, or UnderActuated Robot Manipulator. In this report, we present the hardware development, dynamic parameters derivation, control software and experimental results of real-time control of U-ARM."




Control of Underactuated Manipulators


Book Description

This book investigates in detail cutting-edge technologies of underactuated manipulator control, which is a frontier topic in robotics that possesses great significance in energy conservation as well as fault tolerance for industrial applications. It is also the crucial technology associated with systems in special environments, including underwater or aerospace environments. So far, the topic of underactuated manipulator control has attracted engineers and scientists from various disciplines, such as applied physics, material, automation and robotics. Pursuing a holistic approach, the book establishes a fundamental framework for this topic, while emphasizing the importance of design and optimization in the control of underactuated manipulators. Chapters of the book cover a wide variety of manipulator systems, including vertical underactuated manipulator, planar underactuated manipulator with first-order nonholonomic constraint, planar underactuated manipulator with second-order nonholonomic constraint and flexible underactuated manipulator. The book is intended for undergraduate and graduate students that are interested in underactuated manipulators, researchers that investigate the design and optimization for controllers of underactuated manipulators and engineers working with underactuated systems.







Advanced Studies of Flexible Robotic Manipulators


Book Description

Flexible robotic manipulators pose various challenges in research as compared to rigid robotic manipulators, ranging from system design, structural optimization, and construction to modeling, sensing, and control. Although significant progress has been made in many aspects over the last one-and-a-half decades, many issues are not resolved yet, and simple, effective, and reliable controls of flexible manipulators still remain an open quest. Clearly, further efforts and results in this area will contribute significantly to robotics (particularly automation) as well as its application and education in general control engineering. To accelerate this process, the leading experts in this important area present in this book the state of the art in advanced studies of the design, modeling, control and applications of flexible manipulators. Sample Chapter(s). Chapter 1: Flexible-link Manipulators: Modeling, Nonlinear Control and Observer (235 KB). Contents: Flexible-Link Manipulators: Modeling, Nonlinear Control and Observer (M A Arteaga & B Siciliano); Energy-Based Control of Flexible Link Robots (S S Ge); Trajectory Planning and Compliant Control for Two Manipulators to Deform Flexible Materials (O Al-Jarrah et al.); Force Control of Flexible Manipulators (F Matsuno); Experimental Study on the Control of Flexible Link Robots (D Wang); Sensor Output Feedback Control of Flexible Robot Arms (Z-H Luo); On GA Based Robust Control of Flexible Manipulators (Z-Q Xiao & L-L Cui); Analysis of Poles and Zeros for Tapered Link Designs (D L Girvin & W J Book); Optimum Shape Design of Flexible Manipulators with Tip Loads (J L Russell & Y-Q Gao); Mechatronic Design of Flexible Manipulators (P-X Zhou & Z-Q Xiao); A Comprehensive Study of Dynamic Behaviors of Flexible Robotic Links: Modeling and Analysis (Y-Q Gao & F-Y Wang). Readership: Researchers, lecturers and graduate students in robotics & automated systems, electrical & electronic engineering, and industrial engineering




Experimental Robotics VI


Book Description

This book presents the proceedings of the 6th International Symposium on Experimental Robotics held in Sydney in March 1999. The editors and contributors represent the leading robotics research efforts from around the world. Micro-machines, interplanetary exploration, minimally invasive surgery and emerging humanoid robots are among the most obvious attainments of leading robotics research teams reported in this volume. Less obvious but equally significant are the fundamental advances in robot map-building and methods of communication between humans and machines that are demonstrated through experimental results. This collection of papers will provide the reader with a concise report on the current achievements and future trends in robotics research across the world.




Control Design and Analysis for Underactuated Robotic Systems


Book Description

The last two decades have witnessed considerable progress in the study of underactuated robotic systems (URSs). Control Design and Analysis for Underactuated Robotic Systems presents a unified treatment of control design and analysis for a class of URSs, which include systems with multiple-degree-of-freedom and/or with underactuation degree two. It presents novel notions, features, design techniques and strictly global motion analysis results for these systems. These new materials are shown to be vital in studying the control design and stability analysis of URSs. Control Design and Analysis for Underactuated Robotic Systems includes the modelling, control design and analysis presented in a systematic way particularly for the following examples: l directly and remotely driven Acrobots l Pendubot l rotational pendulum l counter-weighted Acrobot 2-link underactuated robot with flexible elbow joint l variable-length pendulum l 3-link gymnastic robot with passive first joint l n-link planar robot with passive first joint l n-link planar robot with passive single joint double, or two parallel pendulums on a cart l 3-link planar robots with underactuation degree two 2-link free flying robot The theoretical developments are validated by experimental results for the remotely driven Acrobot and the rotational pendulum. Control Design and Analysis for Underactuated Robotic Systems is intended for advanced undergraduate and graduate students and researchers in the area of control systems, mechanical and robotics systems, nonlinear systems and oscillation. This text will not only enable the reader to gain a better understanding of the power and fundamental limitations of linear and nonlinear control theory for the control design and analysis for these URSs, but also inspire the reader to address the challenges of more complex URSs.




Experimental Robotics


Book Description







Robust Control Algorithms for Flexible Manipulators


Book Description

Various modelling and control of two-link flexible manipulators are presented in this book. The lumped parameter modelling method and the assumed modes method modelling are comprehensively reviewed. The book also reviews the trajectory tracking problem and tip trajectory tracking problem along with the suppression of tip deflection of the links. An exponential time varying signal and a chaotic signal are considered as the desired trajectories. The identical/ non-identical slave manipulator is synchronised with the controlled master manipulator so that the slave manipulator indirectly follows the desired manipulator.