Experimental Study of Heat Flux Partitioning in Pressurized Subcooled Flow Boiling


Book Description

Understanding of subcooled flow boiling and the critical heat flux (CHF) is of the utmost importance for both safety and profitability of pressurized water nuclear reactors since they are major factors in the determination of the reactor power rating. Motivated by the emergence of a new wall boiling model by Gilman [3] and previous experimental insights from Phillips [12], a first-of-a-kind experimental investigation of pressurized steady-state subcooled flow boiling was conducted using state-ofthe- art diagnostics to gain a unique insight of the relevant mechanisms, including the partitioning of the wall heat flux. Conditions up to 10 bar pressure, 2000 kg/m2s mass flux and 20 K subcooling were explored. High-speed infrared thermometry tools were developed and used to measure the local time-dependent 2-D temperature and heat flux distributions on the boiling surface. These distributions were analyzed to determine fundamental boiling heat transfer parameters such as the nucleation site density, growth and wait times, nucleation frequency, departure diameter as well as the partitioning of the wall heat flux. While established mechanistic models can capture the trends of growth time and wait time with relatively good accuracy, this work reveals current models do not accurately predict the activation and interaction of nucleation sites on the boiling surface. This is a major roadblock, since boiling curves and CHF values obtained in nominally identical environments can be significantly different depending upon the nucleation site density which in turn is determined by the surface properties. The role of evaporation in the partitioning of the heat flux increases monotonically as the average heat flux increases, up to a maximum value of 70%, and is the dominant mechanism at high heat fluxes. At low and intermediate heat fluxes single-phase heat transfer is the dominant mechanism. Traditional heat partitioning models fail to capture these physics, but newer models with a comprehensive and physically consistent framework show promise in predicting the wall heat transfer. The data and understanding produced by this work will be essential for the development and validation of these modeling tools.




An Experimental Study of Subcooled Flow Boiling at Elevated Pressure in an Annular Flow Channel


Book Description

An experimental setup was developed to study the region of subcooled flow boiling. Multiple studies were carried out to investigate the effects of liquid velocity, pressure, and temperature on the boiling heat transfer of subcooled fluid flowing through a heated annular channel. Water was used as the working fluid and principle of Ohmic heating was used to raise water temperature. The system pressure, heat flux, & mass flux ranged from 101 to 912 kPa, 19 to 155 kW/m2, and 83 to 332 kg/m2-s, respectively. This report contains boiling curves, heat transfer coefficients of various studies and a description of the experimental setup.










Modelling Subcooled Boiling Flows


Book Description

In the context of computational fluid dynamics (CFD), modelling low-pressure subcooled boiling flow is of particular significance. A review is provided in this book of the various numerical modelling approaches that have been adopted to handle subcooled boiling flow. The main focus in the analysis of such a challenging problem can be broadly classified according into two important categories: (i) Heat transfer and wall heat flux partitioning during subcooled boiling flow at the heated wall and (ii) Two-phase flow and bubble behaviours in the bulk subcooled flow away from the heated wall. For the first category, details of both empirical and mechanistic models that have been proposed in the literature are given. The enhancement in heat transfer during forced convective boiling attributed by the presence of both sliding and stationary bubbles, force balance model for bubble departure and bubble lift-off as well as the evaluation of bubble frequency based on fundamental theory depict the many improvements that have been introduced to the current mechanistic model of heat transfer and wall heat flux partitioning. For the second category, details of applications of various empirical relationships and mechanistic model such as population balance model to determine the local bubble diameter in the bulk subcooled liquid that have been employed in the literature are also given. A comparison of the predictions with experimental data is demonstrated. For the local case, the model considering population balance and improved wall heat partition shows good agreement with the experimentally measured radial distributions of the Sauter mean bubble diameter, void fraction, interfacial area concentration and liquid velocity profiles. Significant weakness prevails however over the vapor velocity distribution. For the axial case, good agreement is also achieved for the axial distributions of the Sauter mean bubble diameter, void fraction and interfacial area concentration profiles. The present model correctly represents the plateau at the initial boiling stages at upstream, typically found in low-pressure subcooled boiling flows, followed by the significant rise of the void fraction at downstream.




Boiling


Book Description

Boiling: Research and Advances presents the latest developments and improvements in the technologies, instrumentation, and equipment surrounding boiling. Presented by the Japan Society of Mechanical Engineers, the book takes a holistic approach, first providing principles, and then numerous practical applications that consider size scales. Through six chapters, the book covers contributed sections from knowledgeable specialists on various topics, ranging from outlining boiling phenomena and heat transfer characteristics, to the numerical simulation of liquid-gas two phase flow. It summarizes, in a single volume, the state-of-the-art in boiling heat transfer and provides a valuable resource for thermal engineers and practitioners working in the thermal sciences and thermal engineering. - Explores the most recent advancements in boiling research and technology from the last twenty years - Provides section content written by contributing experts in their respective research areas - Shares research being conducted and advancements being made on boiling and heat transfer in Japan, one of the major research hubs in this field




Materials with Extreme Wetting Properties


Book Description

This book aims at identifying novel advanced materials of extreme wetting properties (MEWP) for practical, industrial applications. The state-of-the art superhdyrophobic, superhdyrophilic, superoleophobic, superoleophilic, and superomniphobic materials, that are MEWP, with respect to their technological and emerging industrial applications are discussed in this book. MEWP offer new perspectives providing numerous potential applications. Hence, these advanced MEWP have the potential to lead to a new generation of products and devices with unique properties and functionalities. Despite the large scientific progress on MEWP there are still some obstacles which have to be solved to make these materials available for real life applications. Recent advances on the production strategies, including methods and materials, of MEWP has shown that the durability and sustainability obstacles can be addressed thus offering the possibility for industrial exploitation. MEWP with wettabilities ranging from superhydrophobicity to superhydrophilicity provide promising avenues for several and important applications, which sometimes are crucial for the humankind. This book also discusses a large variety of other potential applications of MEWP, thus providing new ideas to scientists and engineers for further exploitation of these novel materials. Moreover, the whole spectrum of the recent technological developments, current research progress, future outlook, and the modern trends in the applications of MEWP are discussed in a consistent approach.




An Experimental Investigation of the Flow Boiling Heat Transfer and Critical Heat Flux in a Vertically Oriented Heated Tube


Book Description

Studies the heat transfer characteristics of flow boiling in a circular tube. Emphasis is placed on steady state subcooled flow boiling at high fluxes and CHF. Transient studies in film boiling are also carried out to simulate quenching or emergency cooling situations. This has been achieved by both a literature review and by establishing an experimental test stand to gather data. Recommendations are made for further research based on the results of the present work.