Experiments on Cake Development in Crossflow Filtration for High Level Waste


Book Description

Crossflow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has the advantage of self cleaning through the action of wall shear stress, which is created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduces permeability. Low filter flux can be a bottleneck in waste processing facilities such as the Salt Waste Processing Facility at the Savannah River Site and the Waste Treatment Plant at the Hanford Site. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date, increased rates are generally realized by either increasing the crossflow filter axial flowrate, which is limited by pump capacity, or by increasing filter surface area, which is limited by space and increases the required pump load. In the interest of accelerating waste treatment processing, DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing crossflow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on startup techniques and filter cake development. This paper discusses those filter studies. SRNL set up both dead-end and crossflow filter tests to better understand filter performance based on filter media structure, flow conditions, and filter cleaning. Using non-radioactive simulated wastes, which were both chemically and physically similar to the actual radioactive wastes, the authors performed several tests to demonstrate increases in filter performance. With the proper use of filter flow conditions filter flow rates can be increased over rates currently realized today. This paper describes the selection of a challenging simulated waste and crossflow filter tests to demonstrate how performance can be improved over current operation.




Engineering Separations Unit Operations for Nuclear Processing


Book Description

Engineering Separations Unit Operations for Nuclear Processing provides insight into the fundamentals of separations in nuclear materials processing not covered in typical texts. This book integrates fuel cycle and waste processing into a single, coherent approach, demonstrating that the principles from one field can and should be applied to the other. It provides historical perspectives on nuclear materials processing, current assessment and challenges, and how past challenges were overcome. It also provides understanding of the engineering principles associated with handling nuclear materials. This book is aimed at researchers, graduate students, and professionals in the fields of chemical engineering, mechanical engineering, nuclear engineering, and materials engineering.




Introduction to Cake Filtration


Book Description

Introduction to Cake Filtration presents a comprehensive account of cake filtration studies including analyses of cake formation and growth, results of filtration experiments and data interpretation, measurements and determinations of filtercake properties, and incorporation of cake filtration theories to the analysis of several solid fluid separation processes. It aims at providing the necessary information to prepare people planning to undertake cake filtration work beyond the elementary level. In particular, it is hoped that this book will be helpful to individuals who are interested in cake filtration research and development quickly on track. This volume on cake filtration consists of three main parts: analyses of cake formation and growth, filtration experiments and cake property measurements, and the incorporation of cake filtration theory to the analysis of fluid-particle separation process. It is intended to introduce engineers and engineering students to the subject opf cake filtration at an advanced level and to provide useful information to practicing engineers interested in the design and development of cake filtration systems. · Provides a thorough survey of previous work on cake filtration analysis to gain a basic understanding of the current status of research· Discusses in detail the methods used to determine filter cake properties to obtain practically useful information· Contains outlines of several important but unsolved issues in cake filtration and solid-fluid separation










The Office of Environmental Management Technical Reports: A Bibliography


Book Description

The Office of Environmental Management's (EM) technical reports bibliography is an annual publication that contains information on scientific and technical reports sponsored by the Office of Environmental Management added to the Energy Science and Technology Database from July 1, 1994 through June 30, 1995. This information is divided into the following categories: Focus Areas, Cross-Cutting Programs, and Support Programs. In addition, a category for general information is included. EM's Office of Science and Technology sponsors this bibliography.













PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT.


Book Description

In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several tests to demonstrate increases in filter performance. With the proper use of filter flow conditions and filter enhancers, filter flow rates can be increased over rates currently realized today.