Introduction To Petroleum Exploration And Engineering


Book Description

This book is an introduction to oil and gas designed to be both accessible to absolute beginners who know nothing about the subject, and at the same time interesting to people who work in one area (such as drilling or seismic exploration) and would like to know about other areas (such as production offshore, or how oil and gas were formed, or what can go wrong).It begins by discussing oil and gas in the broader context of human society, and goes on to examine what they consist of, how and where they were formed, how we find them, how we drill for them and how we measure them. It describes production onshore and offshore, and examines in detail some instructive mishaps, including some that are well known, such as Deepwater Horizon and Piper Alpha, and other lesser known incidents. It looks at recent developments, such as shale oil, and concludes with some speculation about the future. It includes many references for readers who would like to read further. Mathematical content is minimal.




Methods and Applications in Petroleum and Mineral Exploration and Engineering Geology


Book Description

Methods and Applications in Petroleum and Mineral Exploration and Engineering Geology is an interdisciplinary book bridging the fields of earth sciences and engineering. It covers topics on natural resources exploration as well as the application of geological exploration methods and techniques to engineering problems. Each topic is presented through theoretical approaches that are illustrated by case studies from around the globe. Methods and Applications in Petroleum and Mineral Exploration and Engineering Geology is a key resource for both academics and professionals, offering both practical and applied knowledge in resources exploration and engineering geology. Features new exploration technologies including seismic, satellite images, basin studies, geochemical modeling and analysis Presents cases studies from different countries such as the Hoggar area (Algeria), Urals and Siberia (Russia), North of Chile (II and III regions), and North of Italy (Trentino Alto adige) Includes applications of the novel methods discussed




Exploration and Engineering


Book Description

Although the Jet Propulsion Laboratory in Pasadena, California, has become synonymous with the United States’ planetary exploration during the past half century, its most recent focus has been on Mars. Beginning in the 1990s and continuing through the Mars Phoenix mission of 2007, JPL led the way in engineering an impressive, rapidly evolving succession of Mars orbiters and landers, including roving robotic vehicles whose successful deployment onto the Martian surface posed some of the most complicated technical problems in space flight history. In Exploration and Engineering, Erik M. Conway reveals how JPL engineers’ creative technological feats led to major breakthroughs in Mars exploration. He takes readers into the heart of the lab’s problem-solving approach and management structure, where talented scientists grappled with technical challenges while also coping, not always successfully, with funding shortfalls, unrealistic schedules, and managerial turmoil. Conway, JPL’s historian, offers an insider’s perspective into the changing goals of Mars exploration, the ways in which sophisticated computer simulations drove the design process, and the remarkable evolution of landing technologies over a thirty-year period. "A masterpiece of research and writing."—Quest: History of Spaceflight Quarterly "A 'must' for any reader of modern astronomy who wants insights into how the lab conducts its research, solves problems, and handle[s] technological challenges."—Midwest Book Review "A great tale of ambition, mishap and recovery, building on extensive archival research and interviews with JPL managers, scientists and engineers, to deliver a detailed overview of each mission's feats and failures . . . Exploration and Engineering is a great book for everyone seriously interested in the struggles and achievements of JPL as NASA's centre for Mars exploration."—Sky at Night Erik M. Conway is a historian of science and technology at the Jet Propulsion Laboratory, California Institute of Technology. He is the author of Atmospheric Science at NASA: A History.




An Elegant Puzzle


Book Description

A human-centric guide to solving complex problems in engineering management, from sizing teams to handling technical debt. There’s a saying that people don’t leave companies, they leave managers. Management is a key part of any organization, yet the discipline is often self-taught and unstructured. Getting to the good solutions for complex management challenges can make the difference between fulfillment and frustration for teams—and, ultimately, between the success and failure of companies. Will Larson’s An Elegant Puzzle focuses on the particular challenges of engineering management—from sizing teams to handling technical debt to performing succession planning—and provides a path to the good solutions. Drawing from his experience at Digg, Uber, and Stripe, Larson has developed a thoughtful approach to engineering management for leaders of all levels at companies of all sizes. An Elegant Puzzle balances structured principles and human-centric thinking to help any leader create more effective and rewarding organizations for engineers to thrive in.




Seven Wonders of Exploration Technology


Book Description

Describes seven major developments in technology that make possible new discoveries about the universe, including undersea exploration devices, the Hubble space telescope, and the Large Hadron Collider.




The Design and Engineering of Curiosity


Book Description

This book describes the most complex machine ever sent to another planet: Curiosity. It is a one-ton robot with two brains, seventeen cameras, six wheels, nuclear power, and a laser beam on its head. No one human understands how all of its systems and instruments work. This essential reference to the Curiosity mission explains the engineering behind every system on the rover, from its rocket-powered jetpack to its radioisotope thermoelectric generator to its fiendishly complex sample handling system. Its lavishly illustrated text explains how all the instruments work -- its cameras, spectrometers, sample-cooking oven, and weather station -- and describes the instruments' abilities and limitations. It tells you how the systems have functioned on Mars, and how scientists and engineers have worked around problems developed on a faraway planet: holey wheels and broken focus lasers. And it explains the grueling mission operations schedule that keeps the rover working day in and day out.




Geological engineering


Book Description




Engineering Seismology


Book Description

The scope of engineering seismology includes geotechnical site investigations for buildings and engineering infrastructures, such as dams, levees, bridges, and tunnels, landslide and active-fault investigations, seismic microzonation, and geophysical investigations of historic buildings. These projects require multidisciplinary participation by the geologist, geophysicist, and geotechnical and earthquake engineers. A key objective of this book (SEG Investigations in Geophysics Series No. 17) by Öz Yilmaz is to encourage the specialists from these disciplines to apply the seismic method to solve the many challenging engineering problems they face. The broader scope of engineering seismology also includes exploration of earth resources, including groundwater exploration, coal and mineral exploration, and geothermal exploration. While focusing on the application of the seismic method to geotechnical site investigations, this book includes many case studies in all of the applications of engineering seismology.




Applied Geophysics with Case Studies on Environmental, Exploration and Engineering Geophysics


Book Description

This book provides a general introduction to the most important methods of applied geophysics with a variety of case studies. These methods represent a primary tool for investigation of the subsurface and are applicable to a very wide range of problems. Applied geophysics is based on physics principles that collect and interpret data on subsurface conditions for practical purposes, including oil and gas exploration, mineral prospecting, geothermal exploration, groundwater exploration, engineering applications, archeological interests, and environmental concerns. The depth of investigation into applied geophysics is shallow, typically from the ground surface to several kilometers deep, where economic, cultural, engineering, or environmental concerns often arise. Applied geophysics uses almost all of the current geophysical methods, including electrical, magnetic, electromagnetic, gravimetric, geothermal, seismic, seismoelectric, magnetotelluric, nuclear, and radioactive methods. In applied geophysics, geophysicists are usually required to have a good understanding of math and physics principles, knowledge of geology and computer skills, and hands-on experience of electronic instruments. A geophysicist's routine job includes survey designs, data acquisition, data processing, and data interpretation with detailed explanation of the study. Applied geophysics consists of three main subject and interest areas, which are exploration geophysics, engineering geophysics, and environmental geophysics.




Girls Can Be Engineers


Book Description

The book stars a young girl named Hannah who is in search of a career for her school's upcoming Career Day. Each time she chooses a career, she becomes discouraged because her chosen careers seem to be only for boys. With the help of her mother, a structural engineer, she learns she can do anything despite her gender.