Extended Graphical Calculus for Categorified Quantum sl(2)


Book Description

In an earlier paper, Aaron D. Lauda constructed a categorification of the Beilinson-Lusztig-MacPherson form of the quantum sl(2); here he, Khovanov, Marco Mackaay, and Marko Stosic enhance the graphical calculus he introduced to include two-morphisms between divided powers one-morphisms and their compositions. They obtain explicit diagrammatical formulas for the decomposition of products of divided powers one-morphisms as direct sums of indecomposable one-morphisms, which are in a bijection with the Lusztig canonical basis elements. Their results show that one of Lauda's main results holds when the 2-category is defined over the ring of integers rather than over a field. The study is not indexed. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com).




Categorification and Higher Representation Theory


Book Description

The emergent mathematical philosophy of categorification is reshaping our view of modern mathematics by uncovering a hidden layer of structure in mathematics, revealing richer and more robust structures capable of describing more complex phenomena. Categorified representation theory, or higher representation theory, aims to understand a new level of structure present in representation theory. Rather than studying actions of algebras on vector spaces where algebra elements act by linear endomorphisms of the vector space, higher representation theory describes the structure present when algebras act on categories, with algebra elements acting by functors. The new level of structure in higher representation theory arises by studying the natural transformations between functors. This enhanced perspective brings into play a powerful new set of tools that deepens our understanding of traditional representation theory. This volume exhibits some of the current trends in higher representation theory and the diverse techniques that are being employed in this field with the aim of showcasing the many applications of higher representation theory. The companion volume (Contemporary Mathematics, Volume 684) is devoted to categorification in geometry, topology, and physics.




Non-cooperative Equilibria of Fermi Systems with Long Range Interactions


Book Description

The authors define a Banach space $\mathcal{M}_{1}$ of models for fermions or quantum spins in the lattice with long range interactions and make explicit the structure of (generalized) equilibrium states for any $\mathfrak{m}\in \mathcal{M}_{1}$. In particular, the authors give a first answer to an old open problem in mathematical physics--first addressed by Ginibre in 1968 within a different context--about the validity of the so-called Bogoliubov approximation on the level of states. Depending on the model $\mathfrak{m}\in \mathcal{M}_{1}$, the authors' method provides a systematic way to study all its correlation functions at equilibrium and can thus be used to analyze the physics of long range interactions. Furthermore, the authors show that the thermodynamics of long range models $\mathfrak{m}\in \mathcal{M}_{1}$ is governed by the non-cooperative equilibria of a zero-sum game, called here thermodynamic game.




Infinite-Dimensional Representations of 2-Groups


Book Description

Just as groups can have representations on vector spaces, 2-groups have representations on 2-vector spaces, but Lie 2-groups typically have few representations on the finite-dimensional 2-vector spaces introduced by Kapranov and Voevodsky. Therefore, Crane, Sheppeard, and Yetter introduced certain infinite-dimensional 2-vector spaces, called measurable categories, to study infinite-dimensional representations of certain Lie 2-groups, and German and North American mathematicians continue that work here. After introductory matters, they cover representations of 2-groups, and measurable categories, representations on measurable categories. There is no index. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com).




Finite Order Automorphisms and Real Forms of Affine Kac-Moody Algebras in the Smooth and Algebraic Category


Book Description

Heintze and Gross discuss isomorphisms between smooth loop algebras and of smooth affine Kac-Moody algebras in particular, and automorphisms of the first and second kinds of finite order. Then they consider involutions of the first and second kind, and make the algebraic case. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com).




Hopf Algebras and Congruence Subgroups


Book Description

We prove that the kernel of the action of the modular group on the center of a semisimple factorizable Hopf algebra is a congruence subgroup whenever this action is linear. If the action is only projective, we show that the projective kernel is a congruence subgroup. To do this, we introduce a class of generalized Frobenius-Schur indicators and endow it with an action of the modular group that is compatible with the original one.




Elliptic Integrable Systems


Book Description

In this paper, the author studies all the elliptic integrable systems, in the sense of C, that is to say, the family of all the $m$-th elliptic integrable systems associated to a $k^\prime$-symmetric space $N=G/G_0$. The author describes the geometry behind this family of integrable systems for which we know how to construct (at least locally) all the solutions. The introduction gives an overview of all the main results, as well as some related subjects and works, and some additional motivations.




A Study of Singularities on Rational Curves Via Syzygies


Book Description

Consider a rational projective curve $\mathcal{C}$ of degree $d$ over an algebraically closed field $\pmb k$. There are $n$ homogeneous forms $g_{1},\dots, g_{n}$ of degree $d$ in $B=\pmb k[x, y]$ which parameterize $\mathcal{C}$ in a birational, base point free, manner. The authors study the singularities of $\mathcal{C}$ by studying a Hilbert-Burch matrix $\varphi$ for the row vector $[g_{1},\dots, g_{n}]$. In the ``General Lemma'' the authors use the generalized row ideals of $\varphi$ to identify the singular points on $\mathcal{C}$, their multiplicities, the number of branches at each singular point, and the multiplicity of each branch. Let $p$ be a singular point on the parameterized planar curve $\mathcal{C}$ which corresponds to a generalized zero of $\varphi$. In the `'triple Lemma'' the authors give a matrix $\varphi'$ whose maximal minors parameterize the closure, in $\mathbb{P}^{2}$, of the blow-up at $p$ of $\mathcal{C}$ in a neighborhood of $p$. The authors apply the General Lemma to $\varphi'$ in order to learn about the singularities of $\mathcal{C}$ in the first neighborhood of $p$. If $\mathcal{C}$ has even degree $d=2c$ and the multiplicity of $\mathcal{C}$ at $p$ is equal to $c$, then he applies the Triple Lemma again to learn about the singularities of $\mathcal{C}$ in the second neighborhood of $p$. Consider rational plane curves $\mathcal{C}$ of even degree $d=2c$. The authors classify curves according to the configuration of multiplicity $c$ singularities on or infinitely near $\mathcal{C}$. There are $7$ possible configurations of such singularities. They classify the Hilbert-Burch matrix which corresponds to each configuration. The study of multiplicity $c$ singularities on, or infinitely near, a fixed rational plane curve $\mathcal{C}$ of degree $2c$ is equivalent to the study of the scheme of generalized zeros of the fixed balanced Hilbert-Burch matrix $\varphi$ for a parameterization of $\mathcal{C}$.







A Mutation-Selection Model with Recombination for General Genotypes


Book Description

The authors investigate a continuous time, probability measure-valued dynamical system that describes the process of mutation-selection balance in a context where the population is infinite, there may be infinitely many loci, and there are weak assumptions on selective costs. Their model arises when they incorporate very general recombination mechanisms into an earlier model of mutation and selection presented by Steinsaltz, Evans and Wachter in 2005 and take the relative strength of mutation and selection to be sufficiently small. The resulting dynamical system is a flow of measures on the space of loci. Each such measure is the intensity measure of a Poisson random measure on the space of loci: the points of a realization of the random measure record the set of loci at which the genotype of a uniformly chosen individual differs from a reference wild type due to an accumulation of ancestral mutations. The authors' motivation for working in such a general setting is to provide a basis for understanding mutation-driven changes in age-specific demographic schedules that arise from the complex interaction of many genes, and hence to develop a framework for understanding the evolution of aging.