Cancer Cell Metabolism


Book Description

This book illustrates various aspects of cancer cell metabolism, including metabolic regulation in solid tumours vs. non-solid tumours, the molecular pathways involved in its metabolism, and the role of the tumour microenvironment in the regulation of cancer cell metabolism. It summarizes the complexity of cancer cell metabolism in terms of the switch from anaerobic to aerobic glycolysis and how mitochondrial damage promotes aerobic glycolysis in cancer cells. The respective chapters provide the latest information on the metabolic remodelling of cancer cells and elucidate the important role of the signalling pathways in reprogramming of cancer cell metabolism. In addition, the book highlights the role of autophagy in cancer cell metabolism, and how metabolic crosstalk between cancer cells and cancer-associated fibroblasts promotes cancer cell progression. In closing, it summarizes recent advancements in drug development through targeting cancer metabolism.




Intercellular Communication in Cancer


Book Description

Cells are by nature compelled to live in groups. They develop dependence over signaling cues received from their microenvironment, in particular from other cells, whether of their own “kind” or of a different type. Therefore, communicating with these cells is a critical aspect of their behavior and fate, as they live and die normally or as they undergo disease-related pathological changes, with dramatic repercussions. In this book, we have asked expert researchers in the field of Intercellular Communication in Cancer to provide chapters on different aspects of interaction between neighboring cells, in the context of cancer diseases. We have specifically focused our efforts on membrane-to-membrane contact-based rather than growth factors-mediated modes of intercellular communications. The contributing authors provide an extensive overview of their respective area of specialization, with an in-depth discussion of the molecular mechanisms of cell-cell interactions, the impact on tumor progression and response to therapies, as well as the cancer diagnostic value of this scientific information. This book aims to introduce essential aspects of the normal and pathological cellular fate and homeostasis to both scientists and clinicians, and also to provide established researchers with an update on the novelties and future directions this expanding field is witnessing.




Phenotypic Switching


Book Description

Phenotypic Switching: Implications in Biology and Medicine provides a comprehensive examination of phenotypic switching across biological systems, including underlying mechanisms, evolutionary significance, and its role in biomedical science. Contributions from international leaders discuss conceptual and theoretical aspects of phenotypic plasticity, its influence over biological development, differentiation, biodiversity, and potential applications in cancer therapy, regenerative medicine and stem cell therapy, among other treatments. Chapters discuss fundamental mechanisms of phenotypic switching, including transition states, cell fate decisions, epigenetic factors, stochasticity, protein-based inheritance, specific areas of human development and disease relevance, phenotypic plasticity in melanoma, prostate cancer, breast cancer, non-genetic heterogeneity in cancer, hepatitis C, and more. This book is essential for active researchers, basic and translational scientists, clinicians, postgraduates and students in genetics, human genomics, pathology, bioinformatics, developmental biology, evolutionary biology and adaptive opportunities in yeast. - Thoroughly addresses the conceptual, experimental and translational aspects that underlie phenotypic plasticity - Emphasizes quantitative approaches, nonlinear dynamics, mechanistic insights and key methodologies to advance phenotypic plasticity studies - Features a diverse range of chapter contributions from international leaders in the field




Tumor Metastasis


Book Description

The key aim of the proposed chapter is to provide readers a brief description for the most important parts of the field of circulating tumor cells (CTCs): the core techniques, including negative and positive selection-based CTC isolation, and the differences between them. Most importantly, we will also review the clinical applications and important findings in clinical trials. The evidence-based review will not only help clinicians use CTCs to predict recurrence and foresee the disease-related outcomes but also to inspire the researchers in this field to conduct further investigations.




Extracellular Vesicles


Book Description

Extracellular Vesicles, Volume 645 in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Chapters in this new release include Genetic labeling of extracellular vesicle exosomes for studying biogenesis and uptake in living mammalian cells, Fluorescent Labeling of Extracellular Vesicles, Isolation of extracellular vesicles from lymph, Transgenic rats for tracking body fluid/tissue-derived extracellular vesicles, Isolation of amniotic extracellular vesicles, Urinary extracellular vesicle isolation, Immunocapture-based ELISA to Characterize and Quantify Extracellular Vesicles in Both Cell Culture Supernatants and Body Fluids, and much more. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Methods in Enzymology series




Inflammation and Cancer


Book Description

This volume examines in detail the role of chronic inflammatory processes in the development of several types of cancer. Leading experts describe the latest results of molecular and cellular research on infection, cancer-related inflammation and tumorigenesis. Further, the clinical significance of these findings in preventing cancer progression and approaches to treating the diseases are discussed. Individual chapters cover cancer of the lung, colon, breast, brain, head and neck, pancreas, prostate, bladder, kidney, liver, cervix and skin as well as gastric cancer, sarcoma, lymphoma, leukemia and multiple myeloma.




Glycosylation and Cancer


Book Description

Advances in Cancer Research provides invaluable information on the exciting and fast-moving field of cancer research. Here, once again, outstanding and original reviews are presented on a variety of topics. - Provides information on cancer research - Outstanding and original reviews - Suitable for researchers and students




Tumor-Induced Immune Suppression


Book Description

Tumor-Induced Immune Suppression - Prospects and Progress in Mechanisms and Therapeutic Reversal presents a comprehensive overview of large number of different mechanisms of immune dysfunction in cancer and therapeutic approaches to their correction. This includes the number of novel mechanisms that has never before been discussed in previous monographs. The last decades were characterized by substantial progress in the understanding of the role of the immune system in tumor progression. Researchers have learned how to manipulate the immune system to generate tumor specific immune response, which raises high expectations for immunotherapy to provide breakthroughs in cancer treatment. It is increasingly clear that tumor-induced abnormalities in the immune system not only hampers natural tumor immune surveillance, but also limits the effect of cancer immunotherapy. Therefore, it is critically important to understand the mechanisms of tumor-induced immune suppression to make any progress in the field and this monograph provides these important insights.




Biogenic Nanoparticles for Cancer Theranostics


Book Description

Biogenic Nanoparticles for Cancer Theranostics outlines the synthesis of biogenic nanoparticles to become cancer theranostic agents. The book also discusses their cellular interaction and uptake, pharmacokinetics, biodistribution, drug delivery efficiency, and other biological effects. Additionally, the book explores the mechanism of their penetration in cancerous tissue, its clearance, and its metabolism. Moreover, the in vitro and in vivo toxicological effects of biogenic nanoparticles are discussed. This book is an important reference source for materials scientists and biomedical scientists who are looking to increase their understanding of how biogenic nanoparticles are being used for a range of cancer treatment types. Metal nanoparticles have traditionally been synthesized by classical physico-chemical methods which have many drawbacks, such as high energy demand, high cost and potential ecotoxicity. As a result, the biosynthesis of metal nanoparticles is gaining increasing prominence. Biosynthesis approaches to metal nanoparticles are clean, safe, energy efficient and environment friendly. - Explains the synthesis methods and applications of biogenic nanoparticles for cancer theranostics - Outlines the distinctive features of biogenic nanoparticles that make them effective cancer treatment agents - Assesses the major challenges of using biogenic nanoparticles on a mass scale