Life in Extreme Environments


Book Description

A diverse account of how life exists in extreme environments and these systems' susceptibility and resilience to climate change.




Human Physiology in Extreme Environments


Book Description

Human Physiology in Extreme Environments is the one publication that offers how human biology and physiology is affected by extreme environments while highlighting technological innovations that allow us to adapt and regulate environments. Covering a broad range of extreme environments, including high altitude, underwater, tropical climates, and desert and arctic climates as well as space travel, this book will include case studies for practical application. Graduate students, medical students and researchers will find Human Physiology in Extreme Environments an interesting, informative and useful resource for human physiology, environmental physiology and medical studies. - Presents human physiological challenges in Extreme Environments combined in one single resource - Provides an excellent source of information regarding paleontological and anthropological aspects - Offers practical medical and scientific use of current concepts




Science in an Extreme Environment


Book Description

On February 20, 1963, a team of nineteen Americans embarked on the first expedition that would combine high-altitude climbing with scientific research. The primary objective of the six scientists on the team—who procured funding by appealing to the military and political applications of their work—was to study how severe stress at high altitudes affected human behavior. The expedition would land the first American on the summit of Mount Everest nearly three years after a successful (though widely disputed) Chinese ascent. At the height of the Cold War, this struggle for the Himalaya turned Everest into both a contested political space and a remote, unpredictable laboratory. The US expedition promised to resurrect American heroism, embodied in a show of physical strength and skill that, when combined with scientific expertise, would dominate international rivals on the frontiers of territorial exploration. It propelled mountaineers, scientists, and their test subjects 29,029 feet above sea level, the highest point of Chinese-occupied Tibet. There they faced hostile conditions that challenged and ultimately compromised standard research protocols, yielding results that were too exceptional to be generalized to other environments. With this book, Philip W. Clements offers a nuanced exploration of the impact of extremity on the production of scientific knowledge and the role of masculinity and nationalism in scientific inquiry.




Life at Extremes


Book Description

From arid deserts to icy poles, outer space to the depths of the sea, this exciting new work studies the remarkable life forms that have made these inhospitable environments their home. Covering not only micro-organisms, but also higher plants and animals such as worms, fish and polar plants, this book details the ecological, biological and biogeochemical challenges these organisms face and unifying themes between environments. Equally useful for the expert, student and casual scientific reader, this book also explores the impact of climate change, rapid seasonal changes and pollution on these extraordinary creatures.




Extreme Environments


Book Description

"The book will focus on the microbial diversity specifically associated to the extreme environments. Following are the areas we are planning to cover in the book. Overview of microbial diversity associated to extreme environments such as a) Extremophilic microbial diversity covering environments like hot springs, soda lakes, acidic environment, glaciers and oceans etc., b) Functional Microbial Diversity especially on processes like nitrogen and carbon cycling etc., c) Molecular tools in microbial diversity. Whole genome sequencing and metagenomic approaches to study microbial diversity. Future directions of microbial Diversity, mutli-omics approaches"--




Enigmatic Microorganisms and Life in Extreme Environments


Book Description

Modern methods and approaches, such as the analysis of molecular sequences to infer evolutionary relationships among organisms, have provided vast new sets of data to further our understanding ofliving organisms, but there remain enigmas in the biological world that will keep scientists working and thinking for decades. Microorganisms by virtue of their small size and almost unbounded diversity provide ample examples of intriguing mysteries that are being challenged with all of the techniques the modern scientific arsenal can provide. One whole arena of this battle to resolve puzzling mysteries about various microorganisms is the almost unbelievable ability of many micro-organisms to live in extreme environments. Whether the challenge is extreme heat, cold, pressure, hyper salinity, alkalinity or acidity, some micro-organisms live now where no life might seem possible. This fascinating state of affairs is the context for this present volume edited by Joseph Seckbach. This Volume is a compilation of many of the especially interesting questions and biological challenges that arise in the consideration of microorganisms in general and the extremophiles in particular.




Drilling in Extreme Environments


Book Description

Uniquely comprehensive and up to date, this book covers terrestrial as well as extraterrestrial drilling and excavation, combining the technology of drilling with the state of the art in robotics. The authors come from industry and top ranking public and corporate research institutions and provide here real-life examples, problems, solutions and case studies, backed by color photographs throughout. The result is a must-have for oil companies and all scientists involved in planetary research with robotic probes. With a foreword by Harrison "Jack" Schmitt -- the first geologist to drill on the moon.




Algae and Cyanobacteria in Extreme Environments


Book Description

This collection of essays is devoted to algae that are unexpectedly found in harsh habitats. The authors explain how these algae thrive in various temperature ranges, extreme pH values, salt solutions, UV radiation, dryness, heavy metals, anaerobic niches, various levels of illumination, and hydrostatic pressure. Not only do the essays provide clues about life on the edges of the Earth, but possibly elsewhere in the universe as well.




Extreme Environment Electronics


Book Description

Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world’s foremost experts in extreme environment electronics, the book provides in-depth information on a wide array of topics. It begins by describing the extreme conditions and then delves into a description of suitable semiconductor technologies and the modeling of devices within those technologies. It also discusses reliability issues and failure mechanisms that readers need to be aware of, as well as best practices for the design of these electronics. Continuing beyond just the "paper design" of building blocks, the book rounds out coverage of the design realization process with verification techniques and chapters on electronic packaging for extreme environments. The final set of chapters describes actual chip-level designs for applications in energy and space exploration. Requiring only a basic background in electronics, the book combines theoretical and practical aspects in each self-contained chapter. Appendices supply additional background material. With its broad coverage and depth, and the expertise of the contributing authors, this is an invaluable reference for engineers, scientists, and technical managers, as well as researchers and graduate students. A hands-on resource, it explores what is required to successfully operate electronics in the most demanding conditions.




Chemical Dynamics in Extreme Environments


Book Description

As computing power increases, a growing number of macroscopic phenomena are modeled at the molecular level. Consequently, new requirements are generated for the understanding of molecular dynamics in exotic conditions. This book illustrates the importance of detailed chemical dynamics and the role it plays in the phenomenology of a number of extreme environments. Each chapter addresses one or more extreme environments, outlines the associated chemical mechanisms of relevance, and then covers the leading edge science that elucidates the chemical coupling. The chapters exhibit a balance between theory and experiment, gas phase, solid state, and surface dynamics, and geophysical and technical environments. Sample Chapter(s). Chapter 1.1: Introduction (203 KB). Chapter 1.2: Chemistry at High Temperatures and Pressures (99 KB). Chapter 1.3: High Temperature Chemistry in the Atmosphere (82 KB). Chapter 1.4: Low Temperature Chemistry (90 KB). Chapter 1.5: Conclusions (131 KB). Contents: Exploring Chemistry in Extreme Environments: A Driving Force for Innovation (M R Berman); Chemistry Under Extreme Conditions: Cluster Impact Activation (T Raz & R D Levine); Nonequilibrium Chemistry Modeling in Rarefied Hypersonic Flows (I D Boyd); Chemical Dynamics in Chemical Laser Media (M C Heaven); From Elementary Reactions to Complex Combustion Systems (C Schulz et al.); The Gas-Phase Chemical Dynamics Associated with Meteors (R A Dressler & E Murad); Dynamics of Hypervelocity Gas/Surface Collisions (D C Jacobs); Surface Chemistry in the Jovian Magnetosphere Radiation Environment (R E Johnson); Dynamics of Atomic Oxygen Induced Polymer Degradation in Low Earth Orbit (T K Minton & D J Garton); Atomic-Level Properties of Thermal Barrier Coatings: Characterization of MetalOCoCeramic Interface (A Christensen et al.); Molecular Dynamics Simulations of Detonations (C T White et al.). Readership: Scientists engaged in cross-disciplinary work and chemists studying multidisciplinary problems."