Extreme Particle Acceleration in Microquasar Jets and Pulsar Wind Nebulae with the MAGIC Telescopes


Book Description

This exhaustive work sheds new light on unsolved questions in gamma-ray astrophysics. It presents not only a complete introduction to the non-thermal Universe, but also a description of the Imaging Atmospheric Cherenkov technique and the MAGIC telescopes. The Fermi-LAT satellite and the HAWC Observatory are also described, as results from both are included. The physics section of the book is divided into microquasars and pulsar wind nebulae (PWNe), and includes extended overviews of both. In turn, the book discusses constraints on particle acceleration and gamma-ray production in microquasar jets, based on the analyses of MAGIC data on Cygnus X-1, Cygnus X-3 and V404 Cygni. Moreover, it presents the discovery of high-energy gamma-ray emissions from Cygnus X-1, using Fermi-LAT data. The book includes the first joint work between MAGIC, Fermi-LAT and HAWC, and discusses the hypothetical PWN nature of the targets in depth. It reports on a PWN population study that discusses, for the first time, the importance of the surrounding medium for gamma-ray production, and in closing presents technical work on the first Large-Size-Telescope (LST; CTA Collaboration), along with a complete description of the camera.




Modelling Pulsar Wind Nebulae


Book Description

In view of the current and forthcoming observational data on pulsar wind nebulae, this book offers an assessment of the theoretical state of the art of modelling them. The expert authors also review the observational status of the field and provide an outlook for future developments. During the last few years, significant progress on the study of pulsar wind nebulae (PWNe) has been attained both from a theoretical and an observational perspective, perhaps focusing on the closest, more energetic, and best studied nebula: the Crab, which appears in the cover. Now, the number of TeV detected PWNe is similar to the number of characterized nebulae observed at other frequencies over decades of observations. And in just a few years, the Cherenkov Telescope Array will increase this number to several hundreds, actually providing an essentially complete account of TeV emitting PWNe in the Galaxy. At the other end of the multi-frequency spectrum, the SKA and its pathfinder instruments, will reveal thousands of new pulsars, and map in exquisite detail the radiation surrounding them for several hundreds of nebulae. By carefully reviewing the state of the art in pulsar nebula research this book prepares scientists and PhD students for future work and progress in the field.










Particle Acceleration in Cosmic Plasmas


Book Description

The review articles collected in this volume present a critical assessment of particle acceleration mechanisms and observations from suprathermal particles in the magnetosphere and heliosphere to high-energy cosmic rays, thus covering a range of energies over seventeen orders of magnitude, from 103 eV to 1020 eV. The main themes are observations of accelerated populations from the magnetosphere to extragalactic scales and assessments of the physical processes underlying particle acceleration in different environments (magnetospheres, the solar atmosphere, the heliosphere, supernova remnants, pulsar wind nebulae and relativistic outflows). Several contributions review the status of shock acceleration in different environments and also the role of turbulence in particle acceleration. Observational results are compared with modelling in different parameter regimes. The book concludes with contributions on the status of particle acceleration research and its future perspectives. This volume is aimed at graduate students and researchers active in astrophysics and space science. Previously published in Space Science Reviews journal, Vol. 173 Nos. 1-4, 2012.




Revealing the Most Energetic Light from Pulsars and Their Nebulae


Book Description

This book reports on the extraordinary observation of TeV gamma rays from the Crab Pulsar, the most energetic light ever detected from this type of object. It presents detailed information on the painstaking analysis of the unprecedentedly large dataset from the MAGIC telescopes, and comprehensively discusses the implications of pulsed TeV gamma rays for state-of-the-art pulsar emission models. Using these results, the book subsequently explores new testing methodologies for Lorentz Invariance Violation, in terms of a wavelength-dependent speed of light. The book also covers an updated search for Very-High-Energy (VHE), >100 GeV, emissions from millisecond pulsars using the Large Area Telescope on board the Fermi satellite, as well as a study on the promising Pulsar Wind Nebula candidate PSR J0631. The observation of VHE gamma rays is essential to studying the non-thermal sources of radiation in our Universe. Rotating neutron stars, also known as pulsars, are an extreme source class known to emit VHE gamma rays. However, to date only two pulsars have been detected with emissions above 100 GeV, and our understanding of their emission mechanism is still lacking.




Particle Populations and High Energy Emission in Pulsar Wind Nebulae


Book Description

Energetic particles streaming out from rapidly spinning neutron stars radiate across the electromagnetic spectrum, creating a pulsar wind nebula (PWN). Many PWNe are spatially resolved in the radio, X-ray, and even gamma-ray wavebands, and thereby provide an excellent laboratory to study not only pulsar winds and dynamics, but also shock processes, magnetic field evolution, and particle transport. Single-zone spectral energy distribution (SED) models have long been used to study the global properties of PWNe, but to fully take advantage of high spatial resolution data one must move beyond these simple models. Supported by multiple X-ray PWN observations, we describe multi-zone time-dependent SED model fitting, with particular emphasis on the spatial variations within nebulae. The SED model constrains the wind velocity profile, magnetic field profile, age and spin-down history of the central pulsar, and the PWN injection spectrum. These constraints are of great value to the study of the gamma-ray pulsar population, and to investigations of particle acceleration and the cosmic ray spectrum. The large size of many PWNe in the very high energy gamma-ray (TeV) regime is indicative of significant particle transport over the pulsar lifetime, and in the case study of HESS J1825-137 we find that rapid diffusion of high energy particles is required to match the multi-wavelength data.




The Planets


Book Description

See the Solar System like never before The Planets is an awe-inspiring and informative journey through the Solar System, with all-new 3D globes and models built using the latest data gathered by NASA and the European Space Agency that can be viewed from any angle and layer by layer. You can even move in for a closer look with 3D terrain models that take you on a trip to the surfaces of the rocky planets. As well as covering the Sun, the planets, hundreds of moons and thousands of asteroids and comets, The Planets includes all the major Solar System missions, right up to the latest Mars rovers. Timelines explore our relationship with each planet and infographics present fascinating Solar System facts and planet facts. The Planets is ideal for anyone interested in space exploration and all armchair astronauts or astronomers.




Encyclopedia Of Cosmology, The (In 4 Volumes)


Book Description

The Encyclopedia of Cosmology is a new and exciting project which will be a major, long-lasting, seminal reference (a set of four major volumes) at the graduate student level, laid out by the most prominent, respected researchers in the general field of Cosmology. These volumes will be a comprehensive review of the most important concepts and current status in the field of Cosmology of the Universe, covering both theory and observation.One of the most exciting parts of the encyclopedia is that it will exist in both print and, more importantly, electronic forms, perhaps even with some level of interactivity with material such as expanded explanations, movie clips, dynamic pictures, examples of on-line computation, etc. The electronic version will also reflect constant updates of the material. It will be a truly unique publication, unlike anything any of us have seen or known of in existence today.This comprehensive encyclopedia is edited by Dr. Giovanni Fazio from Harvard Smithsonian Center for Astrophysics, with an advisory board comprised of renowned scientists: Lars Hernquist and Abraham Loeb (Harvard Smithsonian Center for Astrophysics), and Christopher McKee (UC Berkeley). Each volume is authored/edited by a specialist in the area: Galaxy Formation and Evolution written by Rennan Barkana (Tel Aviv University), Numerical Simulations in Cosmology edited by Kentaro Nagamine (Osaka University / University of Nevada), Dark Energy written by Shinji Tsujikawa (Tokyo University of Science), and Dark Matter written by Jihn Kim (Seoul National University).




Science With The Cherenkov Telescope Array


Book Description

This book summarizes the science to be carried out by the upcoming Cherenkov Telescope Array, a major ground-based gamma-ray observatory that will be constructed over the next six to eight years. The major scientific themes, as well as core program of key science projects, have been developed by the CTA Consortium, a collaboration of scientists from many institutions worldwide.CTA will be the major facility in high-energy and very high-energy photon astronomy over the next decade and beyond. CTA will have capabilities well beyond past and present observatories. Thus, CTA's science program is expected to be rich and broad and will complement other major multiwavelength and multimessenger facilities. This book is intended to be the primary resource for the science case for CTA and it thus will be of great interest to the broader physics and astronomy communities. The electronic version (e-book) is available in open access.