Facets of Systems Science


Book Description

This is the substantially updated second edition of the first comprehensive overview of systems science for advanced undergraduate and graduate students. This new edition adds supplemental examples and exercises, and a selection of recent papers in systems science. From a review in Kybernetika : "One is struck in reading Facets at just how monumental of an undertaking this... As Klir presents it, systems science represents a new dimension of science. ...I would like to suggest that a close study of Facets is likely to benefit anyone interested in gaining new insights into scientific inquiry itself as well as new methods for investigating problems of individual interest. Thanks Professor Klir!" -Richard M. Smith




Facets of Systems Science


Book Description

This book has a rather strange history. It began in spring 1989, thirteen years after our Systems Science Department at SUNY-Binghamton was established, when I was asked by a group of students in our doctoral program to have a meeting with them. The spokesman of the group, Cliff Joslyn, opened our meeting by stating its purpose. I can closely paraphrase what he said: "We called this meeting to discuss with you, as Chairman of the Department, a fundamental problem with our systems science curriculum. In general, we consider it a good curriculum: we learn a lot of concepts, principles, and methodological tools, mathematical, computational, heu ristic, which are fundamental to understanding and dealing with systems. And, yet, we learn virtually nothing about systems science itself. What is systems science? What are its historical roots? What are its aims? Where does it stand and where is it likely to go? These are pressing questions to us. After all, aren't we supposed to carry the systems science flag after we graduate from this program? We feel that a broad introductory course to systems science is urgently needed in the curriculum. Do you agree with this assessment?" The answer was obvious and, yet, not easy to give: "I agree, of course, but I do not see how the situation could be alleviated in the foreseeable future.




Facets of Systems Science


Book Description

This book has a rather strange history. It began in Spring 1989, thirteen years after our Systems Science Department at SUNY -Binghamton was established, when I was asked by a group of students in our doctoral program to have a meeting with them. The spokesman of the group, Cliff Joslyn, opened our meeting by stating its purpose. I can closely paraphrase what he said: "We called this meeting to discuss with you, as Chairman of the Department, a fundamental problem with our systems science curriculum. In general, we consider it a good curriculum: we learn a lot of concepts, principles, and methodological tools, mathematical, computational, heuristic, which are fundamental to understanding and dealing with systems. And, yet, we learn virtually nothing about systems science itself. What is systems science? What are its historical roots? What are its aims? Where does it stand and where is it likely to go? These are pressing questions to us. After all, aren't we supposed to carry the systems science flag after we graduate from this program? We feel that a broad introductory course to systems science is urgently needed in the curriculum. Do you agree with this assessment?" The answer was obvious and, yet, not easy to give: "I agree, of course, but I do not see how the situation could be alleviated in the foreseeable future.




Principles of Systems Science


Book Description

This pioneering text provides a comprehensive introduction to systems structure, function, and modeling as applied in all fields of science and engineering. Systems understanding is increasingly recognized as a key to a more holistic education and greater problem solving skills, and is also reflected in the trend toward interdisciplinary approaches to research on complex phenomena. While the concepts and components of systems science will continue to be distributed throughout the various disciplines, undergraduate degree programs in systems science are also being developed, including at the authors’ own institutions. However, the subject is approached, systems science as a basis for understanding the components and drivers of phenomena at all scales should be viewed with the same importance as a traditional liberal arts education. Principles of Systems Science contains many graphs, illustrations, side bars, examples, and problems to enhance understanding. From basic principles of organization, complexity, abstract representations, and behavior (dynamics) to deeper aspects such as the relations between information, knowledge, computation, and system control, to higher order aspects such as auto-organization, emergence and evolution, the book provides an integrated perspective on the comprehensive nature of systems. It ends with practical aspects such as systems analysis, computer modeling, and systems engineering that demonstrate how the knowledge of systems can be used to solve problems in the real world. Each chapter is broken into parts beginning with qualitative descriptions that stand alone for students who have taken intermediate algebra. The second part presents quantitative descriptions that are based on pre-calculus and advanced algebra, providing a more formal treatment for students who have the necessary mathematical background. Numerous examples of systems from every realm of life, including the physical and biological sciences, humanities, social sciences, engineering, pre-med and pre-law, are based on the fundamental systems concepts of boundaries, components as subsystems, processes as flows of materials, energy, and messages, work accomplished, functions performed, hierarchical structures, and more. Understanding these basics enables further understanding both of how systems endure and how they may become increasingly complex and exhibit new properties or characteristics. Serves as a textbook for teaching systems fundamentals in any discipline or for use in an introductory course in systems science degree programs Addresses a wide range of audiences with different levels of mathematical sophistication Includes open-ended questions in special boxes intended to stimulate integrated thinking and class discussion Describes numerous examples of systems in science and society Captures the trend towards interdisciplinary research and problem solving




Facets of Systems Science


Book Description

This book has a rather strange history. It began in Spring 1989, thirteen years after our Systems Science Department at SUNY -Binghamton was established, when I was asked by a group of students in our doctoral program to have a meeting with them. The spokesman of the group, Cliff Joslyn, opened our meeting by stating its purpose. I can closely paraphrase what he said: "We called this meeting to discuss with you, as Chairman of the Department, a fundamental problem with our systems science curriculum. In general, we consider it a good curriculum: we learn a lot of concepts, principles, and methodological tools, mathematical, computational, heuristic, which are fundamental to understanding and dealing with systems. And, yet, we learn virtually nothing about systems science itself. What is systems science? What are its historical roots? What are its aims? Where does it stand and where is it likely to go? These are pressing questions to us. After all, aren't we supposed to carry the systems science flag after we graduate from this program? We feel that a broad introductory course to systems science is urgently needed in the curriculum. Do you agree with this assessment?" The answer was obvious and, yet, not easy to give: "I agree, of course, but I do not see how the situation could be alleviated in the foreseeable future.




An Introduction to Systems Science


Book Description

"This is the first book that renders a thorough discussion of systems science. It draws on material from an extensive collection of external sources, including several other books and a special library collection complete with videotape empirical evidence of applicability of the theory to a wide variety of circumstances. This is essential because systems science must be responsive to diverse human situations of the widest difficulty, and it must fill the void that the specific sciences cannot fill, because these sciences are insensitive to the necessities of reconciling disparate views of multiple observers, and incorporating local conditions in hypotheses that precede inductive explorations."--BOOK JACKET.




Systems Science: Theory, Analysis, Modeling, and Design


Book Description

This book describes a comprehensive approach to applying systems science formally to the deep analysis of a wide variety of complex systems. Detailed ‘how-to’ examples of the three phases (analysis-modeling-design) of systems science are applied to systems of various types (machines, organic (e.g. ecosystem), and supra-organic (e.g. business organizations and government). The complexity of the global system has reached proportions that seriously challenge our abilities to understand the consequences of our use of technology, modification of natural ecosystems, or even how to govern ourselves. For this reason, complex mathematics is eschewed when simpler structures will suffice, allowing the widest possible audience to apply and benefit from the available tools and concepts of systems science in their own work. The book shows, in detail, how to functionally and structurally deconstruct complex systems using a fundamental language of systems. It shows how to capture the discovered details in a structured knowledge base from which abstract models can be derived for simulation. The knowledge base is also shown to be a basis for generating system design specifications for human-built artifacts, or policy recommendations/policy mechanisms for socio-economic-ecological systems management. The book builds on principles and methods found in the authors’ textbook Principles of Systems Science (co-authored with Michael Kalton), but without prerequisites. It will appeal to a broad audience that deals with complex systems every day, from design engineers to economic and ecological systems managers and policymakers.




Information Systems and Global Assemblages: (Re)configuring Actors, Artefacts, Organizations


Book Description

This book constitutes the refereed proceedings of the IFIP WG 8.2 Working Conference on Information Systems and Organizations, IS&O 2014, held in Auckland, New Zealand, in December 2014. The 14 revised full papers presented were carefully reviewed and selected from 28 submissions. The papers are organized in the following topical sections: IS/IT implementation and appropriation; ethnographic account of IS use; structures and networks; health care IS, social media; and IS design.







Collective Beings


Book Description

This book offers an overview on the background to systemics. It introduces the concept of Collective Being as a Multiple System established by processes of emergence and self-organization of the same agents simultaneously or dynamically interacting in different ways. The principles underlying this approach are grounded on the theoretical role of the observer. This view allows to model in a more suitable way complex systems, such as in physics, biology and economics.