Far-Field Optical Nanoscopy


Book Description

This book describes developments in the field of super-resolution fluorescence microscopy or nanoscopy. In 11 chapters, distinguished scientists and leaders in their respective fields describe different nanoscopy approaches, various labeling technologies, and concrete applications. The topics covered include the principles and applications of the most popular nanoscopy techniques STED and (f)PALM/STORM, along with advances brought about by fluorescent proteins and organic dyes optimized for fluorescence nanoscopy. Furthermore, the photophysics of fluorescent labels is addressed, specifically for improving their photoswitching capabilities. Important applications are also discussed, such as the tracking and counting of molecules to determine acting forces in cells, and quantitative cellular imaging, respectively, as well as the mapping of chemical reaction centers at the nano-scale. The 2014 Chemistry Nobel Prize® was awarded for the ground-breaking developments of super-resolved fluorescence microscopy. In this book, which was co-edited by one of the prize winners, readers will find the most recent developments in this field.




Single Molecule Spectroscopy in Chemistry, Physics and Biology


Book Description

Written by the leading experts in the field, this book describes the development and current state of the art in single molecule spectroscopy. The application of this technique, which started 1989, in physics, chemistry and biosciences is displayed.




Nanoscale Photonic Imaging


Book Description

This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.




High Resolution Imaging in Microscopy and Ophthalmology


Book Description

This open access book provides a comprehensive overview of the application of the newest laser and microscope/ophthalmoscope technology in the field of high resolution imaging in microscopy and ophthalmology. Starting by describing High-Resolution 3D Light Microscopy with STED and RESOLFT, the book goes on to cover retinal and anterior segment imaging and image-guided treatment and also discusses the development of adaptive optics in vision science and ophthalmology. Using an interdisciplinary approach, the reader will learn about the latest developments and most up to date technology in the field and how these translate to a medical setting. High Resolution Imaging in Microscopy and Ophthalmology – New Frontiers in Biomedical Optics has been written by leading experts in the field and offers insights on engineering, biology, and medicine, thus being a valuable addition for scientists, engineers, and clinicians with technical and medical interest who would like to understand the equipment, the applications and the medical/biological background. Lastly, this book is dedicated to the memory of Dr. Gerhard Zinser, co-founder of Heidelberg Engineering GmbH, a scientist, a husband, a brother, a colleague, and a friend.




Label-Free Super-Resolution Microscopy


Book Description

This book presents the advances in super-resolution microscopy in physics and biomedical optics for nanoscale imaging. In the last decade, super-resolved fluorescence imaging has opened new horizons in improving the resolution of optical microscopes far beyond the classical diffraction limit, leading to the Nobel Prize in Chemistry in 2014. This book represents the first comprehensive review of a different type of super-resolved microscopy, which does not rely on using fluorescent markers. Such label-free super-resolution microscopy enables potentially even broader applications in life sciences and nanoscale imaging, but is much more challenging and it is based on different physical concepts and approaches. A unique feature of this book is that it combines insights into mechanisms of label-free super-resolution with a vast range of applications from fast imaging of living cells to inorganic nanostructures. This book can be used by researchers in biological and medical physics. Due to its logically organizational structure, it can be also used as a teaching tool in graduate and upper-division undergraduate-level courses devoted to super-resolved microscopy, nanoscale imaging, microscopy instrumentation, and biomedical imaging.




Optically Induced Nanostructures


Book Description

Nanostructuring of materials is a task at the heart of many modern disciplines in mechanical engineering, as well as optics, electronics, and the life sciences. This book includes an introduction to the relevant nonlinear optical processes associated with very short laser pulses for the generation of structures far below the classical optical diffraction limit of about 200 nanometers as well as coverage of state-of-the-art technical and biomedical applications. These applications include silicon and glass wafer processing, production of nanowires, laser transfection and cell reprogramming, optical cleaning, surface treatments of implants, nanowires, 3D nanoprinting, STED lithography, friction modification, and integrated optics. The book highlights also the use of modern femtosecond laser microscopes and nanoscopes as novel nanoprocessing tools.




Optical Nanoscopy and Novel Microscopy Techniques


Book Description

Microscopy is at the forefront of multidisciplinary research. It was developed by physicists, made specific by chemists, and applied by biologists and doctors to better understand how the human body works. For this very reason, the field has been revolutionized in past decades. The objective of Optical Nanoscopy and Novel Microscopy Techniques is to choose some of those revolutionary ideas and serve a general audience from broad disciplines to achieve a fundamental understanding of these technologies and to better apply them in their daily research. The book begins with coverage of super-resolution optical microscopy, which discusses targeted modulation such as STED and SIM or localization methods such as PALM. It then discusses novel development of fluorescent probes, such as organic small-molecule probes, fluorescent proteins, and inorganic labels such as quantum dots. Finally, it describes advanced optical microscopy, such as fluorescence lifetime imaging, fiber optic microscopy, scanning ion conductance microscopy, and the joining of optics and acoustics—photoacoustic microscopy. Following each chapter, a detailed list of references is provided. Problems at the end of each chapter are also included.




Super-Resolution Microscopy


Book Description

This unique book on super-resolution microscopy techniques presents comparative, in-depth analyses of the strengths and weaknesses of the individual approaches. It was written for non-experts who need to understand the principles of super-resolution or who wish to use recently commercialized instruments as well as for professionals who plan to realize novel microscopic devices. Explaining the practical requirements in terms of hardware, software and sample preparation, the book offers a wealth of hands-on tips and practical tricks to get a setup running, provides invaluable help and support for successful data acquisition and specific advice in the context of data analysis and visualization. Furthermore, it addresses a wide array of transdisciplinary fields of applications. The author begins by outlining the joint efforts that have led to achieving super-resolution microscopy combining advances in single-molecule photo-physics, fluorophore design and fluorescent labeling, instrument design and software development. The following chapters depict and compare current main standard techniques such as structured illumination microscopy, single-molecule localization, stimulated emission depletion microscopy and multi-scale imaging including light-sheet and expansion microscopy. For each individual approach the experimental setups are introduced, the imaging protocols are provided and the various applications illustrated. The book concludes with a discussion of future challenges addressing issues of routine applications and further commercialization of the available methods. Guiding users in how to make choices for the design of their own experiments from scratch to promising application, this one-stop resource is intended for researchers in the applied sciences, from chemistry to biology and medicine to physics and engineering.




Near Field Optics


Book Description

Scanning near-field optical microscopy (SNOM, also known as NSOM) is a new local probe technique with a resolving power of 10--50 nm. Not being limited by diffraction, near-field optics (NFO) opens new perspectives for optical characterization and the understanding of optical phenomena, in particular in biology, microelectronics and materials science. SNOM, after first demonstrations in '83/'84, has undergone a rapid development in the past two to four years. The increased interest has been largely stimulated by the wealth of optical properties that can be investigated and the growing importance of characterization on the nanometer scale in general. Examples include the use of fluorescence, birefrigence and plasmon effects for applications in particular in biology, microelectronics and materials science, to name just a few. This volume emerged from the first international meeting devoted exclusively to NFO, and comprises a complete survey of the 1992 activities in the field, in particular the variety of instrumental techniques that are currently being explored, the demonstration of the imaging capabilities as well as theoretical interpretations - a highly nontrivial task. The comprehensive collection of papers devoted to these and related subjects make the book a valuable tool for anybody interested in near-field optics.




Imaging Life


Book Description

This volume provides an overview of a variety of approaches to biological image analysis, which allow for the study of living organisms at all levels of complexity and organization. These organisms range from individual macromolecules to subcellular and cellular volumes, tissues and microbial communities. Such a "systems biology" understanding of life requires the combination of a variety of imaging techniques, and with it an in-depth understanding of their respective strengths and limitations, as well as their intersection with other techniques. Howard, Brown, and Auer show us that the integration of these imaging techniques will allow us to overcome the reductionist approach to biology that dominated the twentieth century, which was aimed at examining the physical and chemical properties of life's constituents, one macromolecule at a time. However, while based on the laws of physics and chemistry, life is not simply a set of chemical reactions and physical forces; it features an exquisite spatiotemporal organization that allows an inconceivably large number of chemical processes to coexist, refined by billions of years of evolutionary experimentation. And yet, many fundamental questions remain largely unanswered; Imaging Life argues that we are just now beginning to address the spatiotemporal organizational component of living processes. "Imaging" is needed in order to reveal the spatiotemporal relationships between components, and thus to understand organizational guiding principles of living systems. Only through imaging will we be able to decipher the mechanisms and the marvelous organization that enable and sustain the mystery of life. Imaging Life shows us how biology is beginning to do just that.