Far-from-equilibrium Dynamics


Book Description

This book is devoted to the study of evolution of nonequilibrium systems. Such a system usually consists of regions with different dominant scales, which coexist in the space-time where the system lives. In the case of high nonuniformity in special direction, one can see patterns separated by clearly distinguishable boundaries or interfaces. The author considers several examples of nonequilibrium systems. One of the examples describes the invasion of the solid phase into the liquidphase during the crystallization process. Another example is the transition from oxidized to reduced states in certain chemical reactions. An easily understandable example of the transition in the temporal direction is a sound beat, and the author describes typical patterns associated with thisphenomenon. The main goal of the book is to present a mathematical approach to the study of highly nonuniform systems and to illustrate it with examples from physics and chemistry. The two main theories discussed are the theory of singular perturbations and the theory of dissipative systems. A set of carefully selected examples of physical and chemical systems nicely illustrates the general methods described in the book.







Far-from-equilibrium Dynamics Of Chemical Systems - Proceedings Of The Second International Symposium


Book Description

The proceedings discuss the theoretical methods used to describe a chemical system which is far from the equilibrium state, and this is illustrated by selected applications. Special attention is paid to very fast chemical reactions and systems in which external or internal noise is present. In particular, the following topics are covered:-the generalized Boltzmann/ Enskog equation for nonequilibrium systems,-stochastic methods for description of noise in chemical systems,-numerical simulations of systems far from equilibrium.




Introduction to Non-equilibrium Physical Chemistry


Book Description

Introduction to Non-equilibrium Physical Chemistry presents a critical and comprehensive account of Non-equilibrium Physical Chemistry from theoretical and experimental angle. It covers a wide spectrum of non-equilibrium phenomena from steady state close to equilibrium to non-linear region involving transition to bistability, temporal oscillations, spatio-temporal oscillations and finally to far from equilibrium phenomena such as complex pattern formation, dynamic instability at interfaces, Chaos and complex growth phenomena (fractals) in Physico-chemical systems. Part I of the book deals with theory and experimental studies concerning transport phenomena in membranes (Thermo-osmosis,Electroosmotic ) and in continuous systems (Thermal diffusion,Soret effect) close to equilibrium Experimental tests provide insight into the domain of validity of Non-equilibrium Thermodynamics ,which is the major theoretical tool for this region. Later developments in Extended Irreversible Thermodynamics and Non-equilibrium Molecular dynamics have been discussed in the Appendix. Part II deals with non-linear steady states and bifurcation to multistability, temporal and spatio- temporal oscillations (Chemical waves). Similarly Part II deals with more complex phenomena such as Chaos and fractal growth occurring in very far from equilibrium region. Newer mathematical techniques for investigating such phenomena along with available experimental studies. Part IV deals with analogous non-equilibrium phenomena occurring in the real systems (Socio-political, Finance and Living systems etc.) for which physico-chemical systems discussed in earlier chapters provide a useful model for development of theories based on non-linear science and science of complexity. - The book provides a critical account of theoretical studies on non-equilibrium phenomenon from region close to equilibrium to far equilibrium - Experimental studies have been reported which provide test of the theories and their limitations - Impacts of the concepts developed in non-equilibrium Physical Chemistry in sociology, economics and other social science and living systems has been discussed




Statistical Thermodynamics of Nonequilibrium Processes


Book Description

The structure of the theory ofthermodynamics has changed enormously since its inception in the middle of the nineteenth century. Shortly after Thomson and Clausius enunciated their versions of the Second Law, Clausius, Maxwell, and Boltzmann began actively pursuing the molecular basis of thermo dynamics, work that culminated in the Boltzmann equation and the theory of transport processes in dilute gases. Much later, Onsager undertook the elucidation of the symmetry oftransport coefficients and, thereby, established himself as the father of the theory of nonequilibrium thermodynamics. Com bining the statistical ideas of Gibbs and Langevin with the phenomenological transport equations, Onsager and others went on to develop a consistent statistical theory of irreversible processes. The power of that theory is in its ability to relate measurable quantities, such as transport coefficients and thermodynamic derivatives, to the results of experimental measurements. As powerful as that theory is, it is linear and limited in validity to a neighborhood of equilibrium. In recent years it has been possible to extend the statistical theory of nonequilibrium processes to include nonlinear effects. The modern theory, as expounded in this book, is applicable to a wide variety of systems both close to and far from equilibrium. The theory is based on the notion of elementary molecular processes, which manifest themselves as random changes in the extensive variables characterizing a system. The theory has a hierarchical character and, thus, can be applied at various levels of molecular detail.




Out-of-Equilibrium (Supra)molecular Systems and Materials


Book Description

A must-have resource that covers everything from out-of-equilibrium chemical systems and materials to dissipative self-assemblies Out-of-Equilibrium Supramolecular Systems and Materials presents a comprehensive overview of the synthetic approaches that use supramolecular bonds in various out-of-thermodynamic equilibrium situations. With contributions from noted experts on the topic, the text contains information on the design of dissipative self-assemblies that maintain their structures when fueled by an external source of energy. The contributors also examine molecules and nanoscale objects and materials that can produce mechanical work based on molecular machines. Additionally, the book explores non-equilibrium supramolecular polymers that can be trapped in kinetically stable states, as well as out-of-equilibrium chemical systems and oscillators that are important to understand the emergence of complex behaviors and, in particular, the origin of life. This important book: Offers comprehensive coverage of fields from design of dissipative self-assemblies to non-equilibrium supramolecular polymers Presents information on a highly emerging and interdisciplinary topic Includes contributions from internationally renowned scientists Written for chemists, physical chemists, biochemists, material scientists, Out-of-Equilibrium Supramolecular Systems and Materials is an indispensable resource written by top scientists in the field.




Dynamics of Self-Organized and Self-Assembled Structures


Book Description

Physical and biological systems driven out of equilibrium may spontaneously evolve to form spatial structures. In some systems molecular constituents may self-assemble to produce complex ordered structures. This book describes how such pattern formation processes occur and how they can be modeled. Experimental observations are used to introduce the diverse systems and phenomena leading to pattern formation. The physical origins of various spatial structures are discussed, and models for their formation are constructed. In contrast to many treatments, pattern-forming processes in nonequilibrium systems are treated in a coherent fashion. The book shows how near-equilibrium and far-from-equilibrium modeling concepts are often combined to describe physical systems. This inter-disciplinary book can form the basis of graduate courses in pattern formation and self-assembly. It is a useful reference for graduate students and researchers in a number of disciplines, including condensed matter science, nonequilibrium statistical mechanics, nonlinear dynamics, chemical biophysics, materials science, and engineering.




Propagation in Systems Far from Equilibrium


Book Description

Macroscopic physics provides us with a great variety of pattern-forming systems displaying propagation phenomena, from reactive fronts in combustion, to wavy structures in convection and to shear flow instabilities in hydrodynamics. These proceedings record progress in this rapidly expanding field. The contributions have the following major themes: - The problems of velocity selection and front morphology of propagating interfaces in multiphase media, with emphasis on recent theoretical and experimental results on dendritic crystal growth, Saffman-Taylor fingering, directional solidification and chemical waves. - The "unfolding" of large-scale, low-frequency behavior in weakly confined homogeneous systems driven far from equilibrium, and more specifically, the envelope approach to the mathematical description of textures in different cases: steady cells, propagating waves, structural defects, and phase instabilities. - The implications of the presence of global downstream transport in open flows for the nature, convective or absolute, of shear flow instabilities, with applications to real boundary layer flows or shear layers, as reported in contributions covering experimental situations of fundamental and/or engineering interest.







Advanced Synergetics


Book Description

This text on the interdisciplinary field of synergetics will be of interest to students and scientists in physics, chemistry, mathematics, biology, electrical, civil and mechanical engineering, and other fields. It continues the outline of basic con cepts and methods presented in my book Synergetics. An Introduction, which has by now appeared in English, Russian, J apanese, Chinese, and German. I have written the present book in such a way that most of it can be read in dependently of my previous book, though occasionally some knowledge of that book might be useful. But why do these books address such a wide audience? Why are instabilities such a common feature, and what do devices and self-organizing systems have in common? Self-organizing systems acquire their structures or functions without specific interference from outside. The differentiation of cells in biology, and the process of evolution are both examples of self-organization. Devices such as the electronic oscillators used in radio transmitters, on the other hand, are man made. But we often forget that in many cases devices function by means of pro cesses which are also based on self-organization. In an electronic oscillator the motion of electrons becomes coherent without any coherent driving force from the outside; the device is constructed in such a way as to permit specific collective motions of the electrons. Quite evidently the dividing line between self-organiz ing systems and man-made devices is not at all rigid.