Fast and Adaptive H.264/AVC Video Coding for Network Based Applications


Book Description

As the state of the art video coding standard, H.264/AVC achieves significant coding performance gain comparing to its predecessors. Nevertheless, the advance comes at huge complexity increase of the encoder, which may hinder its applications to real world. In addition, network applications impose some unique requirements on existing video coding algorithms. For instance, a variable bit rate output of the encoder has to be tuned into a constant rate bit stream to fit transmission channel bandwidth. In this dissertation, two issues related to H.264/AVC video coding are to be addressed: coding complexity and bandwidth adaption (rate control), and corresponding solutions are provided. To reduce the coding complexity, the original mode decision process in H.264/AVC reference software is optimized for fast implementation. Moreover, two rate control algorithms are given to address different requirements of rate control: quality fluctuation reduction and accurate basic unit quantization decision. Experiments are performed to test and validate the proposed algorithms. The results show that the proposed algorithms provide efficient solutions to the above problems and facilitate H.264/AVC coding standard for practical deployment.




Video coding standards


Book Description

The requirements for multimedia (especially video and audio) communications increase rapidly in the last two decades in broad areas such as television, entertainment, interactive services, telecommunications, conference, medicine, security, business, traffic, defense and banking. Video and audio coding standards play most important roles in multimedia communications. In order to meet these requirements, series of video and audio coding standards have been developed such as MPEG-2, MPEG-4, MPEG-21 for audio and video by ISO/IEC, H.26x for video and G.72x for audio by ITU-T, Video Coder 1 (VC-1) for video by the Society of Motion Picture and Television Engineers (SMPTE) and RealVideo (RV) 9 for video by Real Networks. AVS China is the abbreviation for Audio Video Coding Standard of China. This new standard includes four main technical areas, which are systems, video, audio and digital copyright management (DRM), and some supporting documents such as consistency verification. The second part of the standard known as AVS1-P2 (Video - Jizhun) was approved as the national standard of China in 2006, and several final drafts of the standard have been completed, including AVS1-P1 (System - Broadcast), AVS1-P2 (Video - Zengqiang), AVS1-P3 (Audio - Double track), AVS1-P3 (Audio - 5.1), AVS1-P7 (Mobile Video), AVS-S-P2 (Video) and AVS-S-P3 (Audio). AVS China provides a technical solution for many applications such as digital broadcasting (SDTV and HDTV), high-density storage media, Internet streaming media, and will be used in the domestic IPTV, satellite and possibly the cable TV market. Comparing with other coding standards such as H.264 AVC, the advantages of AVS video standard include similar performance, lower complexity, lower implementation cost and licensing fees. This standard has attracted great deal of attention from industries related to television, multimedia communications and even chip manufacturing from around the world. Also many well known companies have joined the AVS Group to be Full Members or Observing Members. The 163 members of AVS Group include Texas Instruments (TI) Co., Agilent Technologies Co. Ltd., Envivio Inc., NDS, Philips Research East Asia, Aisino Corporation, LG, Alcatel Shanghai Bell Co. Ltd., Nokia (China) Investment (NCIC) Co. Ltd., Sony (China) Ltd., and Toshiba (China) Co. Ltd. as well as some high level universities in China. Thus there is a pressing need from the instructors, students, and engineers for a book dealing with the topic of AVS China and its performance comparisons with similar standards such as H.264, VC-1 and RV-9.




The H.264 Advanced Video Compression Standard


Book Description

H.264 Advanced Video Coding or MPEG-4 Part 10 is fundamental to a growing range of markets such as high definition broadcasting, internet video sharing, mobile video and digital surveillance. This book reflects the growing importance and implementation of H.264 video technology. Offering a detailed overview of the system, it explains the syntax, tools and features of H.264 and equips readers with practical advice on how to get the most out of the standard. Packed with clear examples and illustrations to explain H.264 technology in an accessible and practical way. Covers basic video coding concepts, video formats and visual quality. Explains how to measure and optimise the performance of H.264 and how to balance bitrate, computation and video quality. Analyses recent work on scalable and multi-view versions of H.264, case studies of H.264 codecs and new technological developments such as the popular High Profile extensions. An invaluable companion for developers, broadcasters, system integrators, academics and students who want to master this burgeoning state-of-the-art technology. "[This book] unravels the mysteries behind the latest H.264 standard and delves deeper into each of the operations in the codec. The reader can implement (simulate, design, evaluate, optimize) the codec with all profiles and levels. The book ends with extensions and directions (such as SVC and MVC) for further research." Professor K. R. Rao, The University of Texas at Arlington, co-inventor of the Discrete Cosine Transform




Rate-adaptive H.264 for TCP/IP Networks


Book Description

While there has always been a tremendous demand for streaming video over TCP/IP networks, the nature of the application still presents some challenging issues. These applications that transmit multimedia data over best-effort networks like the Internet must cope with the changing network behavior; specifically, the source encoder rate should be controlled based on feedback from a channel estimator that probes the network periodically. First, one such Multimedia Streaming TCP-Friendly Protocol (MSTFP) is considered, which iteratively integrates forward estimation of network status with feedback control to closely track the varying network characteristics. Second, a network-adaptive embedded bit stream is generated using a p-domain rate controller. The conceptual elegance of this p-domain framework stems from the fact that the coding bit rate (R) is approximately linear in the percentage of zeros among the quantized spatial transform coefficients (p), as opposed to the more traditional, complex and highly nonlinear (R- Q) characterization. Though the p-model has been successfully implemented on a few other video codecs, its application to the emerging video coding standard H.264 is considered. The extensive experimental results show thatrobust rate control, similar or improved Peak Signal to Noise Ratio (PSNR), and a faster implementation.




High Efficiency Video Coding (HEVC)


Book Description

This book provides developers, engineers, researchers and students with detailed knowledge about the High Efficiency Video Coding (HEVC) standard. HEVC is the successor to the widely successful H.264/AVC video compression standard, and it provides around twice as much compression as H.264/AVC for the same level of quality. The applications for HEVC will not only cover the space of the well-known current uses and capabilities of digital video – they will also include the deployment of new services and the delivery of enhanced video quality, such as ultra-high-definition television (UHDTV) and video with higher dynamic range, wider range of representable color, and greater representation precision than what is typically found today. HEVC is the next major generation of video coding design – a flexible, reliable and robust solution that will support the next decade of video applications and ease the burden of video on world-wide network traffic. This book provides a detailed explanation of the various parts of the standard, insight into how it was developed, and in-depth discussion of algorithms and architectures for its implementation.




Versatile Video Coding


Book Description

Video is the main driver of bandwidth use, accounting for over 80 per cent of consumer Internet traffic. Video compression is a critical component of many of the available multimedia applications, it is necessary for storage or transmission of digital video over today's band-limited networks. The majority of this video is coded using international standards developed in collaboration with ITU-T Study Group and MPEG. The MPEG family of video coding standards begun on the early 1990s with MPEG-1, developed for video and audio storage on CD-ROMs, with support for progressive video. MPEG-2 was standardized in 1995 for applications of video on DVD, standard and high definition television, with support for interlaced and progressive video. MPEG-4 part 2, also known as MPEG-2 video, was standardized in 1999 for applications of low- bit rate multimedia on mobile platforms and the Internet, with the support of object-based or content based coding by modeling the scene as background and foreground. Since MPEG-1, the main video coding standards were based on the so-called macroblocks. However, research groups continued the work beyond the traditional video coding architectures and found that macroblocks could limit the performance of the compression when using high-resolution video. Therefore, in 2013 the high efficiency video coding (HEVC) also known and H.265, was released, with a structure similar to H.264/AVC but using coding units with more flexible partitions than the traditional macroblocks. HEVC has greater flexibility in prediction modes and transform block sizes, also it has a more sophisticated interpolation and de blocking filters. In 2006 the VC-1 was released. VC-1 is a video codec implemented by Microsoft and the Microsoft Windows Media Video (VMW) 9 and standardized by the Society of Motion Picture and Television Engineers (SMPTE). In 2017 the Joint Video Experts Team (JVET) released a call for proposals for a new video coding standard initially called Beyond the HEVC, Future Video Coding (FVC) or known as Versatile Video Coding (VVC). VVC is being built on top of HEVC for application on Standard Dynamic Range (SDR), High Dynamic Range (HDR) and 360° Video. The VVC is planned to be finalized by 2020. This book presents the new VVC, and updates on the HEVC. The book discusses the advances in lossless coding and covers the topic of screen content coding. Technical topics discussed include: Beyond the High Efficiency Video CodingHigh Efficiency Video Coding encoderScreen contentLossless and visually lossless coding algorithmsFast coding algorithmsVisual quality assessmentOther screen content coding algorithmsOverview of JPEG Series




The VC-1 and H.264 Video Compression Standards for Broadband Video Services


Book Description

This book covers the MPEG H.264 and MS VC-1 video coding standards as well as issues in broadband video delivery over IP networks. This professional reference is designed for industry practitioners, including video engineers, and professionals in consumer electronics, telecommunications and media compression industries. The book is also suitable as a secondary text for advanced-level students in computer science and electrical engineering.




Implementation of a Fast Inter-prediction Mode Decision in H.264/AVC Video Encoder


Book Description

H.264/MPEG-4 Part 10 or AVC (advanced video coding) is currently one of the most widely used industry standards for video compression. There are several video codec solutions, both software and hardware, available in the market for H.264. This video compression technology is primarily used in applications such as video conferencing, mobile TV, blu-ray discs, digital television and internet video streaming. This thesis uses the JM 17.2 reference software [15], which is available for all users and can be downloaded from http://iphome.hhi.de/suehring/tml. The software is mainly used for educational purposes; it also includes the reference software manual which has information about installation, compilation and usage. In real time applications such as video streaming and video conferencing it is important that the video encoding/decoding is fast. It is known, that most of the complexity lies in the H.264 encoder, specifically the motion estimation (ME) and mode decision process introduces high computational complexity and takes a lot of CPU (central processing unit) usage. The mode decision process is complex because of variable block sizes (16X16 to 4x4) motion estimation and half and quarter pixel motion compensations. Hence, the objective of this thesis is to reduce the encoding time while maintaining the same quality and efficiency of compression. The Fast adaptive termination (FAT) [30] algorithm is used in the mode decision and motion estimation process. Based on the rate-distortion (RD) cost characteristics all the inter modes are classified as either skip modes or non-skip modes. In order to select the best mode for any macroblock, the minimum RD cost of these two modes is predicted. Further, for skip mode, an early-skip mode detection test is proposed; for non-skip mode a three-stage scheme is proposed to speed up the mode decision process. Experimental results demonstrate that the proposed technique has good robustness in coding efficiency with different quantization parameters (QP) and various video sequences. It is able to achieve encoding time saving by 47.6% and loss of only 0.01% decrease in structural similarity index matrix (SSIM) with negligible degradation in peak signal to noise ratio (PSNR) and acceptable increase in bit rate.




Intelligent Multimedia Technologies for Networking Applications: Techniques and Tools


Book Description

As ubiquitous multimedia applications benefit from the rapid development of intelligent multimedia technologies, there is an inherent need to present frameworks, techniques and tools that adopt these technologies to a range of networking applications. Intelligent Multimedia Technologies for Networking Applications: Techniques and Tools promotes the discussion of specific solutions for improving the quality of multimedia experience while investigating issues arising from the deployment of techniques for adaptive video streaming. This reference source provides relevant theoretical frameworks and leading empirical research findings and is suitable for practitioners and researchers in the area of multimedia technology.




Ubiquitous Information Technologies and Applications


Book Description

Recent advances in electronic and computer technologies have paved the way for the proliferation of ubiquitous computing and innovative applications that incorporate these technologies. This proceedings book describes these new and innovative technologies, and covers topics like Ubiquitous Communication and Networks, Security Systems, Smart Devices and Applications, Cloud and Grid Systems, Service-oriented and Web Service Computing, Embedded Hardware and Image Processing and Multimedia.