Fast Intra Mode Decision in High Efficiency Video Coding


Book Description

In this thesis a CU early termination algorithm with a fast intra prediction algorithm is proposed that terminates complete full search prediction for the CU and replaced by CU early termination algorithm which determines the complexity of the CU block then on sent decision is made to further split or non-split the CU. This is followed by a PU mode decision to find the optimal modes prediction mode from 35 prediction modes. This includes a two-step process: firstly calculating the Sum of Absolute Differences (SAD) of all the modes by down sampling method and secondly applying a three step search algorithm to remove unnecessary modes. This is followed by early RDOQ (Rate Distortion Optimization Quantization) termination algorithm to further reduce the encoding time. Experimental results based on several video test sequences suggest a decrease of about 35%-48% in encoding time is achieved with implementation of the proposed CU early termination algorithm and fast intra mode decision algorithm for intra predication mode decision with negligible degradation in peak signal to noise ratio (PSNR). Metrics such as BD-bitrate (Bjøntegaard Delta bitrate), BD-PSNR (Bjøntegaard Delta Peak Signal to Noise Ratio) and RD curve (Rate Distortion) are also used.




High Efficiency Video Coding (HEVC)


Book Description

This book provides developers, engineers, researchers and students with detailed knowledge about the High Efficiency Video Coding (HEVC) standard. HEVC is the successor to the widely successful H.264/AVC video compression standard, and it provides around twice as much compression as H.264/AVC for the same level of quality. The applications for HEVC will not only cover the space of the well-known current uses and capabilities of digital video – they will also include the deployment of new services and the delivery of enhanced video quality, such as ultra-high-definition television (UHDTV) and video with higher dynamic range, wider range of representable color, and greater representation precision than what is typically found today. HEVC is the next major generation of video coding design – a flexible, reliable and robust solution that will support the next decade of video applications and ease the burden of video on world-wide network traffic. This book provides a detailed explanation of the various parts of the standard, insight into how it was developed, and in-depth discussion of algorithms and architectures for its implementation.




High Efficiency Video Coding and Other Emerging Standards


Book Description

High Efficiency Video Coding and Other Emerging Standards provides an overview of high efficiency video coding (HEVC) and all its extensions and profiles. There are nearly 300 projects and problems included, and about 400 references related to HEVC alone. Next generation video coding (NGVC) beyond HEVC is also described. Other video coding standards such as AVS2, DAALA, THOR, VP9 (Google), DIRAC, VC1, and AV1 are addressed, and image coding standards such as JPEG, JPEG-LS, JPEG2000, JPEG XR, JPEG XS, JPEG XT and JPEG-Pleno are also listed.Understanding of these standards and their implementation is facilitated by overview papers, standards documents, reference software, software manuals, test sequences, source codes, tutorials, keynote speakers, panel discussions, reflector and ftp/web sites – all in the public domain. Access to these categories is also provided.




Complexity-Aware High Efficiency Video Coding


Book Description

This book discusses computational complexity of High Efficiency Video Coding (HEVC) encoders with coverage extending from the analysis of HEVC compression efficiency and computational complexity to the reduction and scaling of its encoding complexity. After an introduction to the topic and a review of the state-of-the-art research in the field, the authors provide a detailed analysis of the HEVC encoding tools compression efficiency and computational complexity. Readers will benefit from a set of algorithms for scaling the computational complexity of HEVC encoders, all of which take advantage from the flexibility of the frame partitioning structures allowed by the standard. The authors also provide a set of early termination methods based on data mining and machine learning techniques, which are able to reduce the computational complexity required to find the best frame partitioning structures. The applicability of the proposed methods is finally exemplified with an encoding time control system that employs the best complexity reduction and scaling methods presented throughout the book. The methods presented in this book are especially useful in power-constrained, portable multimedia devices to reduce energy consumption and to extend battery life. They can also be applied to portable and non-portable multimedia devices operating in real time with limited computational resources.




Deep Learning Based Fast Mode Decision in HEVC Intra Prediction Using Region Wise Feature Classification


Book Description

The High Efficiency Video Coding (HEVC) standard has achieved best coding efficiency as compared to previous H.264/AVC standard. But the computational time of HEVC encoder has increased mainly because of the hierarchical quad-tree based structure, recursive search for finding the best coding units, and the exhaustive prediction search up-to 35 modes. These advances improve the coding efficiency, but result into a very high computational complexity. Furthermore selecting the optimal modes among all prediction modes are necessary for the subsequent rate distortion optimization process. Therefore we propose a convolutional neural network (CNN) based algorithm which learns the region wise image features and performs a classification job. These classification results are later used in the encoder downstream systems for finding the optimal coding units in each of the tree blocks, and subsequently reduce the number of prediction modes. For our model training, we gathered a new dataset which includes diverse images for the better generalization of our results. The experimental results show that our proposed learning based algorithm reduces the encoder time up to 66.15 % with a minimal Bjontegaard Delta Bit Rate (BD-BR) loss of 1.34 %over the state-of-the-art machine learning approaches. Furthermore our method also reduces the mode selection by 45.91 % with respect to the HEVC baseline.




High Efficiency Video Coding and Other Emerging Standards


Book Description

High Efficiency Video Coding and Other Emerging Standards provides an overview of high efficiency video coding (HEVC) and all its extensions and profiles. There are nearly 300 projects and problems included, and about 400 references related to HEVC alone. Next generation video coding (NGVC) beyond HEVC is also described. Other video coding standards such as AVS2, DAALA, THOR, VP9 (Google), DIRAC, VC1, and AV1 are addressed, and image coding standards such as JPEG, JPEG-LS, JPEG2000, JPEG XR, JPEG XS, JPEG XT and JPEG-Pleno are also listed. Understanding of these standards and their implementation is facilitated by overview papers, standards documents, reference software, software manuals, test sequences, source codes, tutorials, keynote speakers, panel discussions, reflector and ftp/web sites – all in the public domain. Access to these categories is also provided.




MultiMedia Modeling


Book Description

The two-volume set LNCS 11961 and 11962 constitutes the thoroughly refereed proceedings of the 25th International Conference on MultiMedia Modeling, MMM 2020, held in Daejeon, South Korea, in January 2020. Of the 171 submitted full research papers, 40 papers were selected for oral presentation and 46 for poster presentation; 28 special session papers were selected for oral presentation and 8 for poster presentation; in addition, 9 demonstration papers and 6 papers for the Video Browser Showdown 2020 were accepted. The papers of LNCS 11961 are organized in the following topical sections: audio and signal processing; coding and HVS; color processing and art; detection and classification; face; image processing; learning and knowledge representation; video processing; poster papers; the papers of LNCS 11962 are organized in the following topical sections: poster papers; AI-powered 3D vision; multimedia analytics: perspectives, tools and applications; multimedia datasets for repeatable experimentation; multi-modal affective computing of large-scale multimedia data; multimedia and multimodal analytics in the medical domain and pervasive environments; intelligent multimedia security; demo papers; and VBS papers.




Compressed Video Over Networks


Book Description

This volume details the essential elements for designing optimal end-to-end systems. It progresses from the fundamentals of both video compression and networking technologies to an extensive summary of the constant and continuous interaction between the fields. The work seeks to respond to the proliferation of networked digital video applications in daily life with in-depth analyses of technical problems and solutions.