Anthropometric Individualization of Head-Related Transfer Functions Analysis and Modeling


Book Description

Human sound localization helps to pay attention to spatially separated speakers using interaural level and time differences as well as angle-dependent monaural spectral cues. In a monophonic teleconference, for instance, it is much more difficult to distinguish between different speakers due to missing binaural cues. Spatial positioning of the speakers by means of binaural reproduction methods using head-related transfer functions (HRTFs) enhances speech comprehension. These HRTFs are influenced by the torso, head and ear geometry as they describe the propagation path of the sound from a source to the ear canal entrance. Through this geometry-dependency, the HRTF is directional and subject-dependent. To enable a sufficient reproduction, individual HRTFs should be used. However, it is tremendously difficult to measure these HRTFs. For this reason this thesis proposes approaches to adapt the HRTFs applying individual anthropometric dimensions of a user. Since localization at low frequencies is mainly influenced by the interaural time difference, two models to adapt this difference are developed and compared with existing models. Furthermore, two approaches to adapt the spectral cues at higher frequencies are studied, improved and compared. Although the localization performance with individualized HRTFs is slightly worse than with individual HRTFs, it is nevertheless still better than with non-individual HRTFs, taking into account the measurement effort.




Directivity Patterns for Room Acoustical Measurements and Simulations


Book Description

The acoustics of rooms can be objectively described by the room impulse responses obtained for given transfer paths using measurement or simulation. In practice, the directionally dependent behavior of sources and receivers is often disregarded and thus assumed to be of omnidirectional type. In reality, however, these sources and receivers have specific directivity patterns, which are reported to induce audible differences. In this work a methodology to capture, analyze and process directivity patterns of sources and receivers is described. With the help of surrounding spherical microphone and loudspeaker arrays these directivity patterns are measured to be used in room acoustic applications. Room impulse responses with respect to specific directivity patterns can be realized using compact loudspeaker arrays with known directivity. Applying the results of directivity superposition to the set of measured room impulse responses, the acoustics for specific directivity patterns are found. Using a simulation of the room instead, source and receiver directivity patterns can be included in both wave based and particle based methods. The results of this work facilitate more authentic descriptions of room acoustics for specific source and receiver directivity patterns.




Fast Measurement of Individual Head-related Transfer Functions


Book Description

While binaural technology applications gained in popularity in recent years, the majority of applications still use non-individual Head-Related Transfer Functions (HRTFs) from artificial heads. However, certain applications, for example research of spatial hearing or hearing attention, require an physically exact and realistic binaural signal. The limiting factor that prohibits the widespread use of individual HRTFs is the acquisition time of such data. This time requirement has recently been reduced by the use of parallelization in the measurement signal which lead to the development of fast measurement systems capable of acquiring individual and spatially dense HRTF. This thesis provides a objective and subjective evaluation of such a system that is designed with the goal of little disturbance of the measurements in mind. The construction is detailed, followed by both an objective and subjective evaluation. A detailed investigation into additional distortion of the sound field introduced by the system itself is presented and it is shown that the system performs comparably to a conventional system in terms of sound source localization. Furthermore, a method is introduced and evaluated to further reduce the measurement time by using continuous rotation during the measurement. This method is used to reduced the measurement duration from eight minutes to three minutes without audible differences.




Head-Related Transfer Function and Virtual Auditory Display


Book Description

This book systematically details the basic principles and applications of head-related transfer function (HRTF) and virtual auditory display (VAD), and reviews the latest developments in the field, especially those from the author’s own state-of-the-art research group. Head-Related Transfer Function and Virtual Auditory Display covers binaural hearing and the basic principles, experimental measurements, computation, physical characteristics analyses, filter design, and customization of HRTFs. It also details the principles and applications of VADs, including headphone and loudspeaker-based binaural reproduction, virtual reproduction of stereophonic and multi-channel surround sound, binaural room simulation, rendering systems for dynamic and real-time virtual auditory environments, psychoacoustic evaluation and validation of VADs, and a variety of applications of VADs. This guide provides all the necessary knowledge and latest results for researchers, graduate students, and engineers who work in the field of HRTF and VAD.







Head-Related Transfer Function and Acoustic Virtual Reality


Book Description

This book covers all aspects of head-related transfer function (HRTF), from the fundamentals through to the latest applications, such as 3D sound systems. An introductory chapter defines HRTF, describes the coordinate system used in the book, and presents the most recent research achievements in the field. HRTF and sound localization in the horizontal and median planes are then explained, followed by discussion of individual differences in HRTF, solutions to this individuality (personalization of HRTF), and methods of sound image control for an arbitrary 3D direction, encompassing both classic theory and state of the art data. The relations between HRTF and sound image distance and between HRTF and speech intelligibility are fully explored, and measurement and signal processing methods for HRTF are examined in depth. Here, supplementary material is provided to enable readers to measure and analyze HRTF by themselves. In addition, some typical HRTF databases are compared. The final two chapters are devoted to the principles and applications of acoustic virtual reality. This clearly written book will be ideal for all who wish to learn about HRTF and how to use it in their research.




Advances in Fundamental and Applied Research on Spatial Audio


Book Description

Spatial audio is a dynamic and rapidly evolving field, as it is closely linked to advances in computer technology and digital signal processing. The democratization of virtual reality hardware available as consumer devices has moved the field further out of traditional laboratory research, and directly into applied research targeting a wide range of consumers. Advances in Fundamental and Applied Research on Spatial Audio presents a collection of eight peer-reviewed chapters on this exciting area of research. The contributions are organized into three sections: “Acoustic Methodology”, “Perception”, and “Applications”, and cover a range of topics, addressing both headphone- and loudspeaker-based reproductions, offering both methodological overviews and specific case studies.




Binaural Hearing


Book Description

The field of Binaural Hearing involves studies of auditory perception, physiology, and modeling, including normal and abnormal aspects of the system. Binaural processes involved in both sound localization and speech unmasking have gained a broader interest and have received growing attention in the published literature. The field has undergone some significant changes. There is now a much richer understanding of the many aspects that comprising binaural processing, its role in development, and in success and limitations of hearing-aid and cochlear-implant users. The goal of this volume is to provide an up-to-date reference on the developments and novel ideas in the field of binaural hearing. The primary readership for the volume is expected to be academic specialists in the diverse fields that connect with psychoacoustics, neuroscience, engineering, psychology, audiology, and cochlear implants. This volume will serve as an important resource by way of introduction to the field, in particular for graduate students, postdoctoral scholars, the faculty who train them and clinicians.




Communication Acoustics


Book Description

- Speech Generation: Acoustics, Models and Applications (Arild Lacroix). - The Evolution of Digital Audio Technology (John Mourjopoulos). - Audio-Visual Interaction (Armin Kohlrausch) . - Speech and Audio Coding (Ulrich Heute) . - Binaural Technique (Dorte Hammerhoei, Henrik Moeller). - Auditory Virtual Environment (Pedro Novo). - Evolutionary Adaptions for Auditory Communication (Georg Klump). - A Functional View on the Human Hearing Organ (Herbert Hudde). - Modeling of Binaural Hearing (Jonas Braasch). - Psychoacoustics and Sound Quality (Hugo Fastl). - Semiotics for Engineers (Ute Jekosch). - Quality of Transmitted Speech for Humans and Machines (Sebastian Möller).