并行程序设计


Book Description

国外著名高等院校信息科学与技术优秀教材







In Memory Data Management and Analysis


Book Description

This book constitutes the thoroughly refereed post conference proceedings of the First and Second International Workshops on In Memory Data Management and Analysis held in Riva del Garda, Italy, August 2013 and Hangzhou, China, in September 2014. The 11 revised full papers were carefully reviewed and selected from 18 submissions and cover topics from main-memory graph analytics platforms to main-memory OLTP applications.




Database Systems For Advanced Applications '93 - Proceedings Of The 3rd International Symposium On Database Systems For Advanced Applications


Book Description

This proceedings volume contains 52 technical research papers on multidatabases, distributed DB, multimedia DB, object-oriented DB, real-time DB, temporal DB, deductive DB, and intelligent user interface. Some industrial papers are also included.







Parallel Algorithms for Regular Architectures


Book Description

Parallel-Algorithms for Regular Architectures is the first book to concentrate exclusively on algorithms and paradigms for programming parallel computers such as the hypercube, mesh, pyramid, and mesh-of-trees.




Parallel Sorting Algorithms


Book Description

Parallel Sorting Algorithms explains how to use parallel algorithms to sort a sequence of items on a variety of parallel computers. The book reviews the sorting problem, the parallel models of computation, parallel algorithms, and the lower bounds on the parallel sorting problems. The text also presents twenty different algorithms, such as linear arrays, mesh-connected computers, cube-connected computers. Another example where algorithm can be applied is on the shared-memory SIMD (single instruction stream multiple data stream) computers in which the whole sequence to be sorted can fit in the respective primary memories of the computers (random access memory), or in a single shared memory. SIMD processors communicate through an interconnection network or the processors communicate through a common and shared memory. The text also investigates the case of external sorting in which the sequence to be sorted is bigger than the available primary memory. In this case, the algorithms used in external sorting is very similar to those used to describe internal sorting, that is, when the sequence can fit in the primary memory, The book explains that an algorithm can reach its optimum possible operating time for sorting when it is running on a particular set of architecture, depending on a constant multiplicative factor. The text is suitable for computer engineers and scientists interested in parallel algorithms.




Graph Representation Learning


Book Description

Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.