Fatigue Crack Propagation of Nickel-Base Superalloys at 650°C


Book Description

The 650°C fatigue crack propagation behavior of two nickel-base superalloys, René 95 and Waspaloy, were studied with particular emphasis placed on understanding the roles of creep, environment, and two key grain boundary alloying additions, boron and zirconium. Comparison of air and vacuum data showed the air environment to be detrimental over a wide range of frequencies for both alloys. In-depth analysis of René 95 showed that at lower frequencies, such as 0.02 Hz, failure in air occurred by intergranular, environmentally assisted creep crack growth, while at higher frequencies, up to 5.0 Hz, environmental interactions were still evident but creep effects were minimized. The effect of boron and zirconium in Waspaloy was found to be important where environmental and/or creep interactions were present. In those instances, removal of boron and zirconium dramatically increased crack growth. It is therefore plausible that effective dilution of these elements may explain, in part, a previously observed trend in which crack growth rates increased with decreasing grain size.










The Effect of Closure on the Near-Threshold Fatigue Crack Propagation Rates of a Nickel Base Superalloy


Book Description

An experimental study of the effects of closure on the near-threshold fatigue crack growth rates in a nickel-base superalloy is presented. Fatigue crack propagation (FCP) tests were conducted on Rene' 95 at 650°C under either constant load amplitude (increasing ?K) or under threshold load shedding (decreasing ?K) test conditions. Particular emphasis was placed on the level of closure in the near threshold regime as a function of load history, specimen size and thickness, and environment. Test results indicated that for decreasing load threshold tests the recorded threshold levels were independent of load shedding rates. Specimen thickness was found to have no influence on FCP rates, threshold values, or closure loads, thereby eliminating plasticity induced closure as a dominant mechanism. Tests performed in vacuum produced closure values identical to those obtained in an oxidizing environment. It was concluded that the primary operating closure mechanism was roughness induced closure.







Low Cycle Fatigue


Book Description







The Fracture Morphology of Nickel-Base Superalloys Tested in Fatigue and Creep-Fatigue at 650 C


Book Description

The fracture surfaces of compact tension specimens from seven nickel-base superalloys fatigue tested at 650 C were studied by scanning electron microscopy and optical metallography to determine the nature and morphology of the crack surface in the region of stable growth. Crack propagation testing was performed as part of an earlier study at 650 C in air using a 0.33 Hz fatigue cycle and a creep-fatigue cycle incorporating a 900 second dwell at maximum load. In fatigue, alloys with a grain size greater than 20 micrometers, HIP Astroloy, Waspaloy, and MERL 76, exhibited transgranular fracture. MERL 76 also displayed numerous fracture sites which were associated with boundaries of prior powder particles. The two high strength, fine grain alloys, IN 100 and NASA IIB-7, exhibited intergranular fracture. Rene 95 and HIP plus forged Astroloy displayed a mixed failure mode that was transgranular in the coarse grains and intergranular in the fine grains. Under creep-fatigue conditions, fracture was found to be predominantly intergranular in all seven alloys. Gayda, J. and Miner, R. V. Glenn Research Center NASA-TM-81740, E-793







Modelling of Crack Growth in Single-Crystal Nickel-Base Superalloys


Book Description

This dissertation was produced at the Division of Solid Mechanics at Linköping University and is part of a research project, which comprises modelling, microstructure investigations and material testing of cast nickel-base superalloys. The main objective of this work was to deepen the understanding of the fracture behaviour of single-crystal nickel-base superalloys and to develop a model to predict the fatigue crack growth behaviour. Frequently, crack growth in these materials has been observed to follow one of two distinct cracking modes; Mode I like cracking perpendicular to the loading direction or crystallographic crack growth on the octahedral {111}-planes, where the latter is associated with an increased fatigue crack growth rate. Thus, it is of major importance to account for this behaviour in component life prediction. Consequently, a model for the prediction of the transition of cracking modes and the correct active crystallographic plane, i.e. the crack path, and the crystallographic crack growth rate has been developed. This model is based on the evaluation of appropriate crack driving forces using three-dimensional finite-element simulations. A special focus was given towards the influence of the crystallographic orientation on the fracture behaviour. Further, a model to incorporate residual stresses in the crack growth modelling is presented. All modelling work is calibrated and validated by experiments on different specimen geometries with different crystallographic orientations. This dissertation consists of two parts, where Part I gives an introduction and background to the field of research, while Part II consists of six appended papers. Die vorliegende Dissertation wurde in der Abteilung für Festigkeitslehre an der Universität von Linköping erstellt und ist Teil eines Forschungsprojektes, welches Modellierung, Mikrostrukturuntersuchungen und Materialtests von gegossenen nickelbasierten Superlegierungen umfasst. Das Hauptziel dieser Arbeit war es, das Verständnis des Bruchverhaltens von einkristallinen Superlegierungen auf Nickelbasis zu vertiefen und ein Modell zur Vorhersage des Wachstumsverhaltens von Ermüdungsrissen zu entwickeln. Es wurde beobachtet, dass das Risswachstum in diesen Materialien einem von zwei unterschiedlichen Rissmodi folgt; Modus I Rissfortschritt senkrecht zur Belastungsrichtung oder kristallographisches Risswachstum auf den oktaedrischen f111g-Ebenen, wobei letzteres mit einer erhöhten Ermüdungsrisswachstumsrate verbunden ist. Somit ist es von grosser Bedeutung dieses Verhalten in der Lebensdauervorhersage einer Komponente zu berücksichtigen. Demzufolge wurde ein Modell für die Vorhersage des Übergangs zwischen den Rissmodi und der korrekten aktiven kristallographischen Ebene, d.h. des Risspfades, sowie der kristallographischen Risswachstumsrate erarbeitet. Dieses Modell basiert auf geeigneten Rissantriebskräften, welche mit Hilfe dreidimensionaler Finite-Elemente-Simulationen berechnet werden. Im Fokus stand insbesondere der Einuss der kristallographischen Orientierung auf das Bruchverhalten. Ausserdem wird ein Modell zur Berücksichtigung von Restspannungen in der Risswachstumsmodellierung präsentiert. Alle Modellierungsarbeiten wurden durch Experimente an verschiedenen Probengeometrien mit unterschiedlichen kristallographischen Orientierungen kalibriert und validiert. Diese Dissertation besteht aus zwei Teilen, wobei Teil I aus einer Einführung und einem Hintergrund in das Forschungsgebiet und Teil II aus sechs beigefügten Forschungsartikeln besteht.