Fatigue Performance Evaluation of WesTrack Asphalt Mixtures Using Viscoelastic Continuum Damage Approach


Book Description

Introduction -- Objectives and summary -- Theoretical background -- Test methods -- Materials and specimen fabrication -- Uniaxial testing -- Determination of viscoelastic properties from IDT test -- Development of a simple performance test and validation -- Conclusions and recommendations -- Implementation and technology transfer plan -- References -- Appendices.




Viscoelastic Analysis and Fatigue Characterization of Bituminous Materials in Two Length Scales Under the Influene of Aging


Book Description

Fatigue cracking in asphalt concrete (AC) is of immense importance to pavement design and analysis because it is one of the most important forms of distress that can lead to structural failure in pavement. Once started, these types of cracks can be combined with other environmental factors leading to detrimental effects such as faster rates of pavement deterioration and shortened pavement life and functionality. Currently AASHTO TP101, also known as linear amplitude sweep (LAS) specification, is being widely used to evaluate the ability of an asphalt binder to resist fatigue. The LAS method, although mechanistic in its approach, has certain drawbacks. First, the test is performed on an aged 2-mm thick binder sample, which in reality may never exist in the AC where there is a varying non-uniform thickness of the binder across the components of the AC. Secondly, the test methodology predicts an increased fatigue resistance at lower strain levels of load when the binder ages. This is in contrast to the general belief among researchers that aging is one of the primary contributors to the acceleration of pavement cracking. This study aims to evaluate fatigue resistance in a more realistic approach that is more likely to exist in AC by incorporating sand asphalt mixtures. First, the linear viscoelastic properties of binder and sand asphalt mixture samples were evaluated to obtain the material properties under the influence of aging. Later, the fatigue tests on the sand asphalt mixture were investigated to understand the influence of a thin film of binder on the fatigue resistance. It was observed that based energy dissipation criterion for the binder evaluated a reasonable estimate for fatigue damage at relatively lower temperatures, but was limited to capture the influence of aging. Moreover, it was observed that fatigue testing on a binder at an intermediate temperature of 25 °C could cause edge effects to dominate as seen in the plateau regime for the phase angle in the time sweep tests. In order to overcome the edge effects in the binder LAS tests, the sand asphalt mixture testing was used for analyzing the binder fatigue resistance. Sand asphalt mixture testing could capture the microcracking and macrocracking phases more distinctively when compared to binder testing. In the case of pressure aging vessel (PAV) aged samples, it was observed that the macrocracking phase disappeared and was replaced by sudden changes in the material properties, indicating that the PAV aged mixture was more susceptible to fatigue cracking. By using the simplified viscoelastic continuum damage approach, the fatigue resistance of the binder and sand asphalt mixture was evaluated. The sand asphalt mixture testing was better to capture the influence of aging and changes in the microstructure during fatigue in comparison to binder fatigue tests..




A Unified Method for the Analysis of Nonlinear Viscoelasticity and Fatigue Cracking of Asphalt Mixtures Using the Dynamic Mechanical Analyzer


Book Description

Fatigue cracking is one of the primary modes of distress in asphalt pavements that has an important economic impact. Fatigue resistance characterization of an asphalt mixture is a complex issue due to: (i) composite nature of the material, (ii) gradation of aggregate particles, (iii) variation of asphalt film thickness, (iv) air voids distributions, (v) asphalt binder nonlinear viscoelastic behavior, (vi) effects of binder oxidative aging as a function of time, and (vii) micro crack healing during rest periods. Different methods to assess fatigue cracking in asphalt materials are available in the literature. However, there is no methodology to characterize fatigue cracking behavior of asphalt materials that is independent of the mode of loading (controlled-strain or controlled-stress). The objective of this research is to develop a new methodology to characterize fatigue cracking of the fine aggregate matrix (FAM) portion of asphalt mixtures using dynamic mechanical analyses (DMA). This is accomplished through different, but related, approaches. The first approach relies on identifying the various mechanisms of energy dissipation during fatigue cracking that are manifested in: (i) nonlinear viscoelastic deformation, (ii) fracture, and (iii) permanent deformation. Energy indices were derived to quantify each of these energy dissipation mechanisms and to quantify fatigue cracking irrespective of the mode of loading. The first outcome of the approach is a fatigue damage parameter (crack growth index) that provides comparable results for a given material even when tested under different modes of loading and different load (strain or stress) amplitudes. The developed fatigue characterization method has a lower coefficient of variation when compared to conventional parameters (number of load cycles to failure or cumulative dissipated energy). The crack growth index parameter was also qualitatively and quantitatively compared to three dissipated energy methods available in the literature. The second outcome of this research is a constitutive model that can describe both asphalt mixtures' nonlinear viscoelastic response and fatigue damage in one formulation. Nonlinear viscoelastic as well as damage parameters were obtained for both modes of loading. This second approach has the advantage that the constitutive model can be implemented in a numerical framework to describe the response of asphalt mixtures under various boundary conditions.




Fatigue Response of Asphalt-aggregate Mixes


Book Description

The development process included a number of phases, which are described in the report. Included in this report are the following: 1) a state-of-knowledge review for fatigue response of asphalt aggregate mixes, 2) a description of a pilot test program and its results, 3) a description of an expanded test program using the equipment and methodology selected in the pilot test program, and 4) a description of a mix analysis and design system, which can be used to mitigate fatigue cracking.




Bituminous Mixtures and Pavements VI


Book Description

Bituminous Mixtures and Pavements contains 113 accepted papers from the 6th International ConferenceBituminous Mixtures and Pavements (6th ICONFBMP, Thessaloniki, Greece, 10-12 June 2015). The 6th ICONFBMP is organized every four years by the Highway Engineering Laboratory of the Aristotle University of Thessaloniki, Greece, in conjunction with




Computational Methods for Fracture


Book Description

This book offers a collection of 17 scientific papers about the computational modeling of fracture. Some of the manuscripts propose new computational methods and/or how to improve existing cutting edge methods for fracture. These contributions can be classified into two categories: 1. Methods which treat the crack as strong discontinuity such as peridynamics, scaled boundary elements or specific versions of the smoothed finite element methods applied to fracture and 2. Continuous approaches to fracture based on, for instance, phase field models or continuum damage mechanics. On the other hand, the book also offers a wide range of applications where state-of-the-art techniques are employed to solve challenging engineering problems such as fractures in rock, glass, concrete. Also, larger systems such as fracture in subway stations due to fire, arch dams, or concrete decks are studied.




Development of a Fast and Cost-effective Asphalt Mixture Fatigue Test System


Book Description

Fatigue cracking is one of the critical distress modes in asphalt pavements. Accurate prediction and evaluation of fatigue performance are crucial to extending the service life of asphalt mixtures. Naturally, laboratory testing methods for fatigue characterization are time-consuming and require sophisticated procedures. Any effort to improve the speed and quality of the information gained from laboratory fatigue tests is valuable. This research work presents the results of a study investigating the possibility of implementing a new approach to characterize asphalt mixture fatigue behavior. This new approach includes cyclic tests run on cylindrical asphalt specimens in three-point beam mode (herein referred to as three-point bending cylinder (3PBC) geometry). Timoshenko beam theory along with the viscoelastic continuum damage (VECD) theory was implemented to model the mechanical response of the specimens. An excellent correlation between the results of 3PBC tests and uniaxial push-pull fatigue tests were observed. The 3PBC setup possesses the most advantages of uniaxial push-pull tests and includes more advantages such as not requiring a saw to cut the ends of the sample, not requiring gluing operation (and the gluing jig) and the possibility of estimating Poisson's ratio from the data. The proposed 3PBC approach was evaluated through laboratory tests conducted on various asphalt mixtures with varying binder types, mix components, and volumetric properties. The approach proposed herein was validated through finite element analysis. In addition, ruggedness evaluation of the 3PBC testing approach through varying factors and their levels were investigated and presented.




Fracture Properties and Fatigue Cracking Resistance of Asphalt Binders


Book Description

Several different types of modifiers are increasingly being used to improve the performance of asphalt binders or to achieve desired mixture production characteristics (e.g., Warm Mix Asphalt). However, current Superpave performance specifications do not accurately reflect the performance characteristics of these modified binders. The main objective of this study was to evaluate the inherent fatigue cracking resistance of asphalt binders in the form of a matrix with rigid particle inclusions. The underlying rationale for this approach was to subject the binders to a state of stress that is similar to the one in a full asphalt mixture. This was achieved by fabricating and testing composite specimens of the asphalt binders and glass beads with a specified gradation. Four asphalt binders with similar true temperature grades but different modifiers were used in this study. The viscoelastic and fatigue cracking characteristics of the binders were measured using the glass bead-binder composite specimens in a dynamic shear rheometer at an intermediate temperature. The results demonstrate that the four asphalt binders modified using different methods had different damage characteristics despite the fact that these four binders were rated to have a similar performance grade based on the Superpave specifications. Fatigue cracking characteristics of the glass bead-binder test specimens used in this study were qualitatively very similar to the fatigue cracking characteristics of full asphalt mixtures using the same binders. The rank order of fatigue cracking resistance for the four glass bead-binder mixtures compared reasonably well to the rank order of fatigue cracking resistance for the full asphalt mixtures that incorporated these asphalt binders.




Fatigue Performance Prediction of North Carolina Mixtures Using Simplified Viscoelastic Continuum Damage Model


Book Description

Fatigue performance modeling is one the major topics in asphalt concrete modeling work. Currently the only standard fatigue test available for asphalt concrete mixtures is the flexural bending fatigue test, AASHTO T-321. There are several issues associated with flexural fatigue testing, the most important of which are the stress state is not uniform but varies over the depth of the specimen and equipment for fabricating beam specimens is not widely available. Viscoelastic continuum damage (VECD) fatigue testing is a promising alternative to flexural fatigue testing. Different researchers have successfully applied the VECD model to asphalt concrete mixtures using constant crosshead rate direct tension test. However, due to the load level limitation of the new coming Asphalt Mixture Performance Tester (AMPT) testing equipment, there is an immediate need to develop a model that can characterize fatigue performance quickly using cyclic test data. In this study, a simplified viscoelastic continuum damage model developed at NCSU is applied to various North Carolina mixtures, which are used in the NCDOT HWY-2007-7 MEPDG local calibration project. It is shown that the simplified VECD model can predict fatigue tests fairly accurately under various temperature conditions and strain levels. It is also shown that the model can be further utilized to simulate both the strain controlled direct tension fatigue test and the traditional beam fatigue test. In this thesis, simulation results are presented. Conclusions regarding the applicability of the new model are advanced as well as suggestions for further work.