Fatigue Performance Evaluation of WesTrack Asphalt Mixtures Using Viscoelastic Continuum Damage Approach


Book Description

Introduction -- Objectives and summary -- Theoretical background -- Test methods -- Materials and specimen fabrication -- Uniaxial testing -- Determination of viscoelastic properties from IDT test -- Development of a simple performance test and validation -- Conclusions and recommendations -- Implementation and technology transfer plan -- References -- Appendices.







Fatigue Performance Evaluation of WesTrack Asphalt Mixtures Based on Viscoelastic Analysis of Indirect Tensile Test


Book Description

This dissertation presents the viscoelastic characterization of asphalt concrete in indirect tensile testing and the development of a simple performance test for fatigue cracking. The analytical solutions to calculate creep compliance and center strain from displacements measured on the specimen surface were developed based upon the theory of viscoelasticity. These developments were verified by 3-D finite element viscoelastic analysis and tests. A simple performance test was developed based on these solutions and work potential theory. To evaluate its validity, the indirect tensile tests were performed on WesTrack asphalt mixtures varying aggregate gradations, asphalt contents, and air void contents. Fracture energy obtained from indirect tensile strength testing and creep testing was highly correlated with field performance of these mixtures at WesTrack. A combination of indirect tensile creep and strength testing was proposed as a simple performance test for fatigue cracking. Recommendations for expanding the applicability of the simple performance test developed are provided.










Fatigue Performance Prediction of North Carolina Mixtures Using Simplified Viscoelastic Continuum Damage Model


Book Description

Fatigue performance modeling is one the major topics in asphalt concrete modeling work. Currently the only standard fatigue test available for asphalt concrete mixtures is the flexural bending fatigue test, AASHTO T-321. There are several issues associated with flexural fatigue testing, the most important of which are the stress state is not uniform but varies over the depth of the specimen and equipment for fabricating beam specimens is not widely available. Viscoelastic continuum damage (VECD) fatigue testing is a promising alternative to flexural fatigue testing. Different researchers have successfully applied the VECD model to asphalt concrete mixtures using constant crosshead rate direct tension test. However, due to the load level limitation of the new coming Asphalt Mixture Performance Tester (AMPT) testing equipment, there is an immediate need to develop a model that can characterize fatigue performance quickly using cyclic test data. In this study, a simplified viscoelastic continuum damage model developed at NCSU is applied to various North Carolina mixtures, which are used in the NCDOT HWY-2007-7 MEPDG local calibration project. It is shown that the simplified VECD model can predict fatigue tests fairly accurately under various temperature conditions and strain levels. It is also shown that the model can be further utilized to simulate both the strain controlled direct tension fatigue test and the traditional beam fatigue test. In this thesis, simulation results are presented. Conclusions regarding the applicability of the new model are advanced as well as suggestions for further work.




Development of a Fast and Cost-effective Asphalt Mixture Fatigue Test System


Book Description

Fatigue cracking is one of the critical distress modes in asphalt pavements. Accurate prediction and evaluation of fatigue performance are crucial to extending the service life of asphalt mixtures. Naturally, laboratory testing methods for fatigue characterization are time-consuming and require sophisticated procedures. Any effort to improve the speed and quality of the information gained from laboratory fatigue tests is valuable. This research work presents the results of a study investigating the possibility of implementing a new approach to characterize asphalt mixture fatigue behavior. This new approach includes cyclic tests run on cylindrical asphalt specimens in three-point beam mode (herein referred to as three-point bending cylinder (3PBC) geometry). Timoshenko beam theory along with the viscoelastic continuum damage (VECD) theory was implemented to model the mechanical response of the specimens. An excellent correlation between the results of 3PBC tests and uniaxial push-pull fatigue tests were observed. The 3PBC setup possesses the most advantages of uniaxial push-pull tests and includes more advantages such as not requiring a saw to cut the ends of the sample, not requiring gluing operation (and the gluing jig) and the possibility of estimating Poisson's ratio from the data. The proposed 3PBC approach was evaluated through laboratory tests conducted on various asphalt mixtures with varying binder types, mix components, and volumetric properties. The approach proposed herein was validated through finite element analysis. In addition, ruggedness evaluation of the 3PBC testing approach through varying factors and their levels were investigated and presented.




Long and Deep Tunnels


Book Description

The design and construction of “long and deep” tunnels, i.e. tunnels under mountains, characterised by either considerable length and/or overburden, represent a considerable challenge. The scope of this book is not to instruct how to design and construct such tunnels but to share a method to identify the potential hazards related to the process of designing and constructing long and deep tunnels, to produce a relevant comprehensive analysis and listing, to quantify the probability and consequences, and to design proper mitigation measures and countermeasures. The design, developed using probabilistic methods, is verified during execution by means of the so called Plan for Advance of the Tunnel (PAT) method, which allows adapting the design and control parameters of the future stretches of the tunnel to the results of the stretches already finished, using the monitoring data base. Numerous criteria are given to identify the key parameters, necessary for the PAT procedure. Best practices of excavation management with the help of real time monitoring and control are also provided. Furthermore cost and time evaluation systems are analysed. Finally, contractual aspects related to construction by contract are investigated, for best development and application of models more appropriate for tunnelling-construction contracts. The work will be of interest to practising engineers, designers, consultants and students in mining, underground, tunnelling, transportation and construction engineering, as well as to foundation and geological engineers, urban planners/developers and architects.