Fibre Metal Laminates


Book Description

Like New, No Highlights,No Markup,all pages are intact.




Fatigue and Fracture of Fibre Metal Laminates


Book Description

This book contributes to the field of hybrid technology, describing the current state of knowledge concerning the hybrid material concept of laminated metallic and composite sheets for primary aeronautical structural applications. It is the only book to date on fatigue and fracture of fibre metal laminates (FMLs). The first section of the book provides a general background of the FML technology, highlighting the major FML types developed and studied over the past decades in conjunction with an overview of industrial developments based on filed patents. In turn, the second section discusses the mechanical response to quasi-static loading, together with the fracture phenomena during quasi-static and cyclic loading. To consider the durability aspects related to strength justification and certification of primary aircraft structures, the third section discusses thermal aspects related to FMLs and their mechanical response to various environmental and acoustic conditions.







Glare


Book Description

Glare is the name given to a new material for aircraft structures developed at Delft University in the Netherlands. It consists of thin aluminium layers bonded together by adhesive containing embedded fibres and is very resistant to fatigue. This book gives the inside story of how the development of Glare took place. It took more than two decades from the first tests in Delft to the major breakthrough following the decision of Airbus to apply the material on the A380 super-jumbo. This success was achieved by a small group of people inspired by professor Boud Vogelesang, people who kept believing in the material and fought against all obstacles during the years. This book tells the story of the ups and downs and the final success of their efforts.










Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites


Book Description

Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites covers key aspects of fracture and failure in natural/synthetic fiber reinforced polymer based composite materials, ranging from crack propagation, to crack growth, and from notch-size effect, to damage-tolerant design. Topics of interest include mechanical properties, such as tensile, flexural, compression, shear, impact, fracture toughness, low and high velocity impact, and anti-ballistic properties of natural fiber, synthetic fibers and hybrid composites materials. It also covers physical properties, such as density, water absorption, thickness swelling, and void content of composite materials fabricated from natural or synthetic materials. Written by leading experts in the field, and covering composite materials developed from different natural fibers and their hybridization with synthetic fibers, the book's chapters provide cutting-edge, up-to-date research on the characterization, analysis and modelling of composite materials. - Contains contributions from leading experts in the field - Discusses recent progress on failure analysis, SHM, durability, life prediction and the modelling of damage in natural fiber-based composite materials - Covers experimental, analytical and numerical analysis - Provides detailed and comprehensive information on mechanical properties, testing methods and modelling techniques




Composites Forming Technologies


Book Description

Composites are versatile engineered materials composed of two or more constituent materials which, when combined, lead to improved properties over the individual components whilst remaining separate on a macroscopic level. Due to their versatility, composite materials are used in a variety of areas ranging from healthcare and civil engineering to spacecraft technology. Composites forming technologies reviews the wealth of research in forming high-quality composite materials.The book begins with a concise explanation of the forming mechanisms and characterisation for composites, as well as covering modelling and analysis of forming techniques. Further chapters discuss the testing and simulation of composite materials forming. The book also considers forming technologies for various composite material forms including thermoset and thermoplastic prepreg, moulding compounds and composite/metal laminates.With its distinguished editor and array of international contributors, Composites forming technologies is an essential reference for engineers, researchers and academics involved with the production and use of composite materials. - Reviews the wealth of research in forming high-quality composite materials - Includes a concise explanation of the forming mechanisms and charaterisation for composites - Considers forming technologies for various composite material forms




Epoxy Composites


Book Description

Discover a one-stop resource for in-depth knowledge on epoxy composites from leading voices in the field Used in a wide variety of materials engineering applications, epoxy composites are highly relevant to the work of engineers and scientists in many fields. Recent developments have allowed for significant advancements in their preparation, processing and characterization that are highly relevant to the aerospace and automobile industry, among others. In Epoxy Composites: Fabrication, Characterization and Applications, a distinguished team of authors and editors deliver a comprehensive and straightforward summary of the most recent developments in the area of epoxy composites. The book emphasizes their preparation, characterization and applications, providing a complete understanding of the correlation of rheology, cure reaction, morphology, and thermo-mechanical properties with filler dispersion. Readers will learn about a variety of topics on the cutting-edge of epoxy composite fabrication and characterization, including smart epoxy composites, theoretical modeling, recycling and environmental issues, safety issues, and future prospects for these highly practical materials. Readers will also benefit from the inclusion of: A thorough introduction to epoxy composites, their synthesis and manufacturing, and micro- and nano-scale structure formation in epoxy and clay nanocomposites An exploration of long fiber reinforced epoxy composites and eco-friendly epoxy-based composites Practical discussions of the processing of epoxy composites based on carbon nanomaterials and the thermal stability and flame retardancy of epoxy composites An analysis of the spectroscopy and X-ray scattering studies of epoxy composites Perfect for materials scientists, polymer chemists, and mechanical engineers, Epoxy Composites: Fabrication, Characterization and Applications will also earn a place in the libraries of engineering scientists working in industry and process engineers seeking a comprehensive and exhaustive resource on epoxy composites.