Fault-Tolerant Control for Time-Varying Delayed T-S Fuzzy Systems


Book Description

This book delves into the complexities of fault estimation and fault-tolerant control for nonlinear time-delayed systems. Through the use of multiple-integral observers, it addresses fault estimation and active fault-tolerant control for time-delayed fuzzy systems with actuator faults and both actuator and sensor faults. Additionally, the book explores the use of sliding mode control to solve issues of sensor fault estimation, intermittent actuator fault estimation, and active fault-tolerant control for time-delayed switched fuzzy systems. Furthermore, it presents the use of H∞ guaranteed cost control for both time-delayed switched fuzzy systems and time-delayed switched fuzzy stochastic systems with intermittent actuator and sensor faults. Finally, the problem of delay-dependent finite-time fault-tolerant control for uncertain switched T-S fuzzy systems with multiple time-varying delays, intermittent process faults and intermittent sensor faults is studied. The research on fault estimation and tolerant control has drawn attention from engineers and scientists in various fields such as electrical, mechanical, aerospace, chemical, and nuclear engineering. The book provides a comprehensive framework for this topic, placing a strong emphasis on the importance of stability analysis and the impact of result conservatism on the design and implementation of observers and controllers. It is intended for undergraduate and graduate students interested in fault diagnosis and tolerant control technology, researchers studying time-varying delayed T-S fuzzy systems, and observer/controller design engineers working on system stability applications.




Observer-Based Fault Diagnosis and Fault-Tolerant Control for Switched Systems


Book Description

This book focuses on the fault diagnosis observer design for the switched system. Model-based fault diagnosis and fault tolerant control are one of the most popular research directions in recent decades. It contains eight chapters. Every chapter is independent in the method of observer design, but all chapters are around the same topic. Besides, in each chapter, the model description and theoretical results are firstly provided, then some practical application examples are illustrated to prove the obtained results. The advanced theoretical methodologies will benefit researchers or engineers in the area of safety engineering and the arrangement of the structure will help the readers to understand the content easily.




Fuzzy Control Systems Design and Analysis


Book Description

A comprehensive treatment of model-based fuzzy control systems This volume offers full coverage of the systematic framework for the stability and design of nonlinear fuzzy control systems. Building on the Takagi-Sugeno fuzzy model, authors Tanaka and Wang address a number of important issues in fuzzy control systems, including stability analysis, systematic design procedures, incorporation of performance specifications, numerical implementations, and practical applications. Issues that have not been fully treated in existing texts, such as stability analysis, systematic design, and performance analysis, are crucial to the validity and applicability of fuzzy control methodology. Fuzzy Control Systems Design and Analysis addresses these issues in the framework of parallel distributed compensation, a controller structure devised in accordance with the fuzzy model. This balanced treatment features an overview of fuzzy control, modeling, and stability analysis, as well as a section on the use of linear matrix inequalities (LMI) as an approach to fuzzy design and control. It also covers advanced topics in model-based fuzzy control systems, including modeling and control of chaotic systems. Later sections offer practical examples in the form of detailed theoretical and experimental studies of fuzzy control in robotic systems and a discussion of future directions in the field. Fuzzy Control Systems Design and Analysis offers an advanced treatment of fuzzy control that makes a useful reference for researchers and a reliable text for advanced graduate students in the field.




Fuzzy Control Systems with Time-Delay and Stochastic Perturbation


Book Description

This book presents up-to-date research developments and novel methodologies on fuzzy control systems. It presents solutions to a series of problems with new approaches for the analysis and synthesis of fuzzy time-delay systems and fuzzy stochastic systems, including stability analysis and stabilization, dynamic output feedback control, robust filter design, and model approximation. A set of newly developed techniques such as fuzzy Lyapunov function approach, delay-partitioning, reciprocally convex, cone complementary linearization approach are presented. Fuzzy Control Systems with Time-Delay and Stochastic Perturbation: Analysis and Synthesis is a comprehensive reference for researcher and practitioners working in control engineering, system sciences and applied mathematics, and is also a useful source of information for senior undergraduates and graduates in these areas. The readers will benefit from some new concepts, new models and new methodologies with practical significance in control engineering and signal processing.




Networked Nonlinear Stochastic Time-Varying Systems


Book Description

Networked Non-linear Stochastic Time-Varying Systems: Analysis and Synthesis copes with the filter design, fault estimation and reliable control problems for different classes of nonlinear stochastic time-varying systems with network-enhanced complexities. Divided into three parts, the book discusses the finite-horizon filtering, fault estimation and reliable control, and randomly occurring nonlinearities/uncertainties followed by designing of distributed state and fault estimators, and distributed filters. The third part includes problems of variance-constrained H∞ state estimation, partial-nodes-based state estimation and recursive filtering for nonlinear time-varying complex networks with randomly varying topologies, and random coupling strengths. Offers a comprehensive treatment of the topics related to Networked Nonlinear Stochastic Time-Varying Systems with rigorous math foundation and derivation Unifies existing and emerging concepts concerning control/filtering/estimation and distributed filtering Provides a series of latest results by drawing on the conventional theories of systems science, control engineering and signal processing Deal with practical engineering problems such as event triggered H∞ filtering, non-fragile distributed estimation, recursive filtering, set-membership filtering Demonstrates illustrative examples in each chapter to verify the correctness of the proposed results This book is aimed at engineers, mathematicians, scientists, and upper-level students in the fields of control engineering, signal processing, networked control systems, robotics, data analysis, and automation.




Dual-Control-Design


Book Description

The TP and TS Fuzzy model transformation based control design has revolutionized the field of control design by introducing a highly effective approach. Through the TP model transformation, it has become evident that the design of controllers and observers, as well as the effectiveness of applied LMIs, are greatly influenced by the shape of the antecedent Fuzzy sets and the number and location of the consequent systems. Furthermore, the TP model transformation has revealed that the sensitivity of controller and observer design differs in nature. This implies that the overseer and controller design require different TS Fuzzy model representations of the system at hand. This book offers a comprehensive exploration of this phenomenon. The book introduces several new theoretical advancements in the TP or TS Fuzzy model transformation based control design framework. It presents a complete framework for TP and TS Fuzzy model transformation and offers various tools based on this approach to enhance control design effectiveness. The book introduces novel theoretical concepts, such as interpolation between alternative TS Fuzzy model representations, which leads to a new optimization framework. It also explores methods to achieve further complexity reduction beyond rank minimization. Additionally, the book addresses the execution of TS Fuzzy model transformation for large-sized problems and demonstrates how to reinforce various properties of antecedent Fuzzy sets through manipulation. Practical hints and guidance for control design is provided throughout the book, with examples illustrating the application of novel solutions. Matlab codes are also included to facilitate the implementation of the proposed methods.




Sliding Mode Control of Semi-Markovian Jump Systems


Book Description

This book presents analysis and design for a class of stochastic systems with semi-Markovian jump parameters. It explores systematic analysis of semi-Markovian jump systems via sliding mode control strategy which makes up the shortages in the analysis and design of stochastic systems. This text provides a novel estimation method to deal with the stochastic stability of semi-Markovian jump systems along with design of novel integral sliding surface. Finally, Takagi-Sugeno fuzzy model approach is brought to deal with system nonlinearities and fuzzy sliding mode control laws are provided to ensure the stabilization purpose. Features: Presents systematic work on sliding mode control (SMC) of semi-Markvoain jump systems. Explores SMC methods, such as fuzzy SMC, adaptive SMC, with the presence of generally uncertain transition rates. Provides novel method in dealing with stochastic systems with unknown switching information. Proposes more general theories for semi-Markovian jump systems with generally uncertain transition rates. Discusses practical examples to verify the effectiveness of SMC theory in semi-Markovian jump systems. This book aims at graduate and postgraduate students and for researchers in all engineering disciplines, including mechanical engineering, electrical engineering and applied mathematics, control engineering, signal processing, process control, control theory and robotics.




Advances in Observer Design and Observation for Nonlinear Systems


Book Description

This book discusses various methods for designing different kinds of observers, such as the Luenberger observer, unknown input observers, discontinuous observers, sliding mode observers, observers for impulsive systems, observers for nonlinear Takagi-Sugeno fuzzy systems, and observers for electrical machines. A hydraulic process system and a renewable energy system are provided as examples of applications.




Analysis and Synthesis for Interval Type-2 Fuzzy-Model-Based Systems


Book Description

This book develops a set of reference methods capable of modeling uncertainties existing in membership functions, and analyzing and synthesizing the interval type-2 fuzzy systems with desired performances. It also provides numerous simulation results for various examples, which fill certain gaps in this area of research and may serve as benchmark solutions for the readers. Interval type-2 T-S fuzzy models provide a convenient and flexible method for analysis and synthesis of complex nonlinear systems with uncertainties.